2 research outputs found

    DataSheet1_Rapid Detection and Antimicrobial Susceptibility Testing of Pathogens Using AgNPs-Invertase Complexes and the Personal Glucose Meter.DOCX

    No full text
    Rapid detection of pathogens and assessment of antimicrobial susceptibility is of great importance for public health, especially in resource-limiting regions. Herein, we developed a rapid, portable, and universal detection method for bacteria using AgNPs-invertase complexes and the personal glucose meter (PGM). In the presence of bacteria, the invertase could be released from AgNPs-invertase complexes where its enzyme activity of invertase was inhibited. Then, the enzyme activity of invertase was restored and could convert sucrose into glucose measured by a commercially PGM. There was a good linear relationship between PGM signal and concentration of E. coli or S. aureus as the bacteria model with high sensitivity. And our proposed biosensor was proved to be a rapid and reliable method for antimicrobial susceptibility testing within 4 h with consistent results of Minimum Inhibitory Concentrations (MICs) testing, providing a portable and convenient method to treat infected patients with correct antibiotics and reduce the production of antibiotic-resistant bacteria, especially for resource-limiting settings.</p

    An Ultrasensitive Colorimetric Foodborne Pathogenic Detection Method Using a CRISPR/Cas12a Mediated Strand Displacement/Hybridization Chain Reaction

    No full text
    Accurate, rapid, and sensitive pathogenic detections play an important role in food safety. Herein, we developed a novel CRISPR/Cas12a mediated strand displacement/hybridization chain reaction (CSDHCR) nucleic acid assay for foodborne pathogenic colorimetric detection. A biotinylated DNA toehold is coupled on avidin magnetic beads and acts as an initiator strand to trigger the SDHCR. The SDHCR amplification allowed the formation of long hemin/G-quadruplex-based DNAzyme products to catalyze the TMB-H2O2 reaction. In the presence of the DNA targets, the trans-cleavage activity of CRISPR/Cas12a was activated to cleave the initiator DNA, resulting in the failure of SDHCR and no color change. Under optimal conditions, the CSDHCR has a satisfactory linear detection of DNA targets with a regression equation Y = 0.0531*X – 0.0091 (R2 = 0.9903) in the range of 10 fM to 1 nM, and the limit of detection was determined as 4.54 fM. In addition, Vibrio vulnificus, one foodborne pathogen, was used to verify the practical application of the method, and it showed satisfactory specificity and sensitivity with a limit of detection at 1.0 × 100 CFU/mL coupling with recombinase polymerase amplification. Our proposed CSDHCR biosensor could be a promising alternative method for ultrasensitive and visual detection of nucleic acids and the practical application of foodborne pathogens
    corecore