105 research outputs found
Optimal sampling strategies for multiscale stochastic processes
In this paper, we determine which non-random sampling of fixed size gives the
best linear predictor of the sum of a finite spatial population. We employ
different multiscale superpopulation models and use the minimum mean-squared
error as our optimality criterion. In multiscale superpopulation tree models,
the leaves represent the units of the population, interior nodes represent
partial sums of the population, and the root node represents the total sum of
the population. We prove that the optimal sampling pattern varies dramatically
with the correlation structure of the tree nodes. While uniform sampling is
optimal for trees with ``positive correlation progression'', it provides the
worst possible sampling with ``negative correlation progression.'' As an
analysis tool, we introduce and study a class of independent innovations trees
that are of interest in their own right. We derive a fast water-filling
algorithm to determine the optimal sampling of the leaves to estimate the root
of an independent innovations tree.Comment: Published at http://dx.doi.org/10.1214/074921706000000509 in the IMS
Lecture Notes--Monograph Series
(http://www.imstat.org/publications/lecnotes.htm) by the Institute of
Mathematical Statistics (http://www.imstat.org
Multifractal products of stochastic processes: Construction and some basic properties
Abstract In various fields, such as teletraffic and economics, measured time series have been reported to adhere to multifractal scaling. Classical cascading measures possess multifractal scaling, but their increments form a non-stationary process. To overcome this problem we introduce a construction of random multifractal measures based on iterative multiplication of stationary stochastic processes, a special form of T-martingales. We study L 2 -convergence, non-degeneracy and continuity of the limit process. Establishing a power law for its moments we obtain a formula for the multifractal spectrum and hint at how to prove the full formalism
An Improved Multifractal Formalism and Self Similar Measures
Journal PaperTo characterize the geometry of a measure, its so-called generalized dimensions D(q) have been introduced recently. The mathematically precise definition given by Falconer turns out to be unsatisfactory for reasons of convergence as well as of undesired sensitivity to the particular choice of coordinates in the negative q range. A new definition is introduced, which is based on box-counting too, but which carries relevant information also for negative q. In particular, rigorous proofs are provided for the Legendre connection between generalized dimensions and the so-called multifractal spectrum and for the implicit formula giving the generalized dimensions of self-similar measures, which was until now known only for positive q
- …