11 research outputs found

    Bioinspired Strategy for the Ribosomal Synthesis of Thioether-Bridged Macrocyclic Peptides in Bacteria

    No full text
    Inspired by the biosynthetic logic of lanthipeptide natural products, a new methodology was developed to direct the ribosomal synthesis of macrocyclic peptides constrained by an intramolecular thioether bond. As a first step, a robust and versatile strategy was implemented to enable the cyclization of ribosomally derived peptide sequences via a chemoselective reaction between a genetically encoded cysteine and a cysteine-reactive unnatural amino acid (<i>O</i>-(2-bromoethyl)-tyrosine). Combination of this approach with intein-catalyzed protein splicing furnished an efficient route to achieve the spontaneous, post-translational formation of structurally diverse macrocyclic peptides in bacterial cells. The present peptide cyclization strategy was also found to be amenable to integration with split intein-mediated circular ligation, resulting in the intracellular synthesis of conformationally constrained peptides featuring a bicyclic architecture

    Stereoselective Olefin Cyclopropanation under Aerobic Conditions with an Artificial Enzyme Incorporating an Iron-Chlorin e6 Cofactor

    No full text
    Myoglobin has recently emerged as a promising biocatalyst for catalyzing carbene-mediated cyclopropanation, a synthetically valuable transformation not found in nature. Having naturally evolved for binding dioxygen, the carbene transferase activity of this metalloprotein is severely inhibited by it, imposing the need for strictly anaerobic conditions to conduct these reactions. In this report, we describe how substitution of the native heme cofactor with an iron-chlorin e6 complex enabled the development of a biocatalyst capable of promoting the cyclopropanation of vinylarenes with high catalytic efficiency (up to 6970 TON), turnover rate (>2000 turnovers/min), and stereoselectivity (up to 99% de and ee) in the presence of oxygen. The artificial metalloenzyme can be recombinantly expressed in bacterial cells, enabling its application also in the context of whole-cell biotransformations. This work makes available a robust and easy-to-use oxygen-tolerant biocatalyst for asymmetric cyclopropanations and demonstrates the value of porphyrin ligand substitution as a strategy for tuning and enhancing the catalytic properties of hemoproteins in the context of abiological reactions

    Chemoselective Cyclopropanation over Carbene Y–H Insertion Catalyzed by an Engineered Carbene Transferase

    No full text
    Hemoproteins have recently emerged as promising biocatalysts for promoting a variety of carbene transfer reactions including cyclopropanation and Y–H insertion (Y = N, S, Si, B). For these and synthetic carbene transfer catalysts alike, achieving high chemoselectivity toward cyclopropanation in olefin substrates bearing unprotected Y–H groups has proven remarkably challenging due to competition from the more facile carbene Y–H insertion reaction. In this report, we describe the development of a novel artificial metalloenzyme based on an engineered myoglobin incorporating a serine-ligated Co-porphyrin cofactor that is capable of offering high selectivity toward olefin cyclopropanation over N–H and Si–H insertion. Intramolecular competition experiments revealed a distinct and dramatically altered chemoselectivity of the MbĀ­(H64V,V68A,H93S)Ā­[CoĀ­(ppIX)] variant in carbene transfer reactions compared to myoglobin-based variants containing the native histidine-ligated heme cofactor or other metal/proximal ligand substitutions. These studies highlight the functional plasticity of myoglobin as a ā€œcarbene transferaseā€ and illustrate how modulation of the cofactor environment within this metalloprotein scaffold represents a valuable strategy for accessing carbene transfer reactivity not exhibited by naturally occurring hemoproteins or transition metal catalysts

    Enzymatic C(sp<sup>3</sup>)‑H Amination: P450-Catalyzed Conversion of Carbonazidates into Oxazolidinones

    No full text
    Cytochrome P450 enzymes can effectively promote the activation and cyclization of carbonazidate substrates to yield oxazolidinones via an intramolecular nitrene C–H insertion reaction. Investigation of the substrate scope shows that while benzylic/allylic C–H bonds are most readily aminated by these biocatalysts, stronger, secondary C–H bonds are also accessible to functionalization. Leveraging this ā€œnon-nativeā€ reactivity and assisted by fingerprint-based predictions, improved active-site variants of the bacterial P450 CYP102A1 could be identified to mediate the aminofunctionalization of two terpene natural products with high regio- and stereoselectivity. Mechanistic studies and KIE experiments show that the C–H activation step in these reactions is rate-limiting and proceeds in a stepwise manner, namely, via hydrogen atom abstraction followed by radical recombination. This study expands the reactivity scope of P450-based catalysts in the context of nitrene transfer transformations and provides first-time insights into the mechanism of P450-catalyzed C–H amination reactions

    Discovery of Potent Parthenolide-Based Antileukemic Agents Enabled by Late-Stage P450-Mediated Cī—øH Functionalization

    No full text
    The sesquiterpene lactone parthenolide has recently attracted considerable attention owing to its promising antitumor properties, in particular in the context of stem-cell cancers including leukemia. Yet, the lack of viable synthetic routes for re-elaborating this complex natural product has represented a fundamental obstacle toward further optimization of its pharmacological properties. Here, we demonstrate how this challenge could be addressed via selective, late-stage <i>sp</i><sup>3</sup> C–H bond functionalization mediated by P450 catalysts with tailored site-selectivity. Taking advantage of our recently introduced tools for high-throughput P450 fingerprinting and fingerprint-driven P450 reactivity prediction, we evolved P450 variants useful for carrying out the highly regioselective hydroxylation of two aliphatic sites (C9 and C14) in parthenolide carbocyclic backbone. By chemoenzymatic synthesis, a panel of novel C9- and C14-modified parthenolide analogs were generated in order to gain initial structure–activity insights on these previously inaccessible sites of the molecule. Notably, some of these compounds were found to possess significantly improved antileukemic potency against primary acute myeloid leukemia cells, while exhibiting low toxicity against normal mature and progenitor hematopoietic cells. By identifying two ā€˜hot spots’ for improving the anticancer properties of parthenolide, this study highlights the potential of P450-mediated C–H functionalization as an enabling, new strategy for the late-stage manipulation of bioactive natural product scaffolds

    Cyclopropanations via Heme Carbenes: Basic Mechanism and Effects of Carbene Substituent, Protein Axial Ligand, and Porphyrin Substitution

    No full text
    Catalytic carbene transfer to olefins is a useful approach to synthesize cyclopropanes, which are key structural motifs in many drugs and biologically active natural products. While catalytic methods for olefin cyclopropanation have largely relied on rare transition-metal-based catalysts, recent studies have demonstrated the promise and synthetic value of iron-based heme-containing proteins for promoting these reactions with excellent catalytic activity and selectivity. Despite this progress, the mechanism of iron-porphyrin and hemoprotein-catalyzed olefin cyclopropanation has remained largely unknown. Using a combination of quantum chemical calculations and experimental mechanistic analyses, the present study shows for the first time that the increasingly useful Cī—»C functionalizations mediated by heme carbenes feature an Fe<sup>II</sup>-based, nonradical, concerted nonsynchronous mechanism, with early transition state character. This mechanism differs from the Fe<sup>IV</sup>-based, radical, stepwise mechanism of heme-dependent monooxygenases. Furthermore, the effects of the carbene substituent, metal coordinating axial ligand, and porphyrin substituent on the reactivity of the heme carbenes was systematically investigated, providing a basis for explaining experimental reactivity results and defining strategies for future catalyst development. Our results especially suggest the potential value of electron-deficient porphyrin ligands for increasing the electrophilicity and thus the reactivity of the heme carbene. Metal-free reactions were also studied to reveal temperature and carbene substituent effects on catalytic vs noncatalytic reactions. This study sheds new light into the mechanism of iron-porphyrin and hemoprotein-catalyzed cyclopropanation reactions and it is expected to facilitate future efforts toward sustainable carbene transfer catalysis using these systems

    Controlled Oxidation of Remote sp<sup>3</sup> C–H Bonds in Artemisinin via P450 Catalysts with Fine-Tuned Regio- and Stereoselectivity

    No full text
    The selective oxyfunctionalization of isolated sp<sup>3</sup> C–H bonds in complex molecules represents a formidable challenge in organic chemistry. Here, we describe a rational, systematic strategy to expedite the development of P450 oxidation catalysts with refined regio- and stereoselectivity for the hydroxylation of remote, unactivated C–H sites in a complex scaffold. Using artemisinin as model substrate, we demonstrate how a three-tier strategy involving first-sphere active site mutagenesis, high-throughput P450 fingerprinting, and fingerprint-driven P450 reactivity predictions enabled the rapid evolution of three efficient biocatalysts for the selective hydroxylation of a primary and a secondary C–H site (with both <i>S</i> and <i>R</i> stereoselectivity) in a relevant yet previously inaccessible region of this complex natural product. The evolved P450 variants could be applied to provide direct access to the desired hydroxylated derivatives at preparative scales (0.4 g) and in high isolated yields (>90%), thereby enabling further elaboration of this molecule. As an example, enantiopure C7-fluorinated derivatives of the clinical antimalarial drugs artesunate and artemether, in which a major metabolically sensitive site is protected by means of a C–H to C–F substitution, were afforded via P450-mediated chemoenzymatic synthesis

    Ribosomal Synthesis of Macrocyclic Peptides <i>in Vitro</i> and <i>in Vivo</i> Mediated by Genetically Encoded Aminothiol Unnatural Amino Acids

    No full text
    A versatile method for orchestrating the formation of side chain-to-tail cyclic peptides from ribosomally derived polypeptide precursors is reported. Upon ribosomal incorporation into intein-containing precursor proteins, designer unnatural amino acids bearing side chain 1,3- or 1,2-aminothiol functionalities are able to promote the cyclization of a downstream target peptide sequence via a C-terminal ligation/ring contraction mechanism. Using this approach, peptide macrocycles of variable size and composition could be generated in a pH-triggered manner <i>in vitro</i> or directly in living bacterial cells. This methodology furnishes a new platform for the creation and screening of genetically encoded libraries of conformationally constrained peptides. This strategy was applied to identify and isolate a low-micromolar streptavidin binder (<i>K</i><sub>D</sub> = 1.1 μM) from a library of cyclic peptides produced in Escherichia coli, thereby illustrating its potential toward aiding the discovery of functional peptide macrocycles
    corecore