64 research outputs found
Antimatter regions in the baryon-dominated Universe
Quantum fluctuations of a complex, baryonic charged scalar field caused by
inflation can generate large domains, which convert later into antimatter
regions. As a result the Universe can become globally matter-dominated, with
minor contribution of antimatter regions. The distribution and evolution of
such antimatter regions could cause every galaxy to be a harbour of an
anti-star globular cluster. At the same time, the scenario does not lead to
large-scale isocuvature perturbations, which would disturb observable CMB
anisotropy. The existence of one of such antistar globular cluster in our
Galaxy does not contradict the observed -ray background, but the
expected fluxes of and from such an
antimatter object are definitely accessible to the sensitivity of the coming
AMS--02 experiment.Comment: Talk given at the XIVth Rencontres de Blois 2002 on Matter-Antimatter
Asymmetry, Blois, France, June, 2002, to be published in the proceedings, ed.
J. Tran Thanh Van, 4 latex pages, 2 eps figure
Possible Origin of Antimatter Regions in the Baryon Dominated Universe
We discuss the evolution of U(1) symmetric scalar field at the inflation
epoch with a pseudo Nambu-Goldstone tilt revealing after the end of exponential
expansion of the Universe. The U(1) symmetry is supposed to be associated with
baryon charge. It is shown that quantum fluctuations lead in natural way to
baryon dominated Universe with antibaryon excess regions. The range of
parameters is calculated at which the fraction of Universe occupied by
antimatter and the size of antimatter regions satisfy the observational
constraints, survive to the modern time and lead to effects, accessible to
experimental search for antimatter.Comment: 10 pages, 1 figur
First-order interference of nonclassical light emitted spontaneously at different times
We study first-order interference in spontaneous parametric down-conversion
generated by two pump pulses that do not overlap in time. The observed
modulation in the angular distribution of the signal detector counting rate can
only be explained in terms of a quantum mechanical description based on
biphoton states. The condition for observing interference in the signal channel
is shown to depend on the parameters of the idler radiation.Comment: 5 pages, two-column, submitted to PR
A Delayed Choice Quantum Eraser
This paper reports a "delayed choice quantum eraser" experiment proposed by
Scully and Dr\"{u}hl in 1982. The experimental results demonstrated the
possibility of simultaneously observing both particle-like and wave-like
behavior of a quantum via quantum entanglement. The which-path or both-path
information of a quantum can be erased or marked by its entangled twin even
after the registration of the quantum.Comment: twocolumn, 4pages, submitted to PR
Bell State Preparation using Pulsed Non-Degenerate Two-Photon Entanglement
We report a novel Bell state preparation experiment. High-purity Bell states
are prepared by using femtosecond pulse pumped \emph{nondegenerate} collinear
spontaneous parametric down-conversion. The use of femtosecond pump pulse {\em
does not} result in reduction of quantum interference visibility in our scheme
in which post-selection of amplitudes and other traditional mechanisms, such
as, using thin nonlinear crystals or narrow-band spectral filters are not used.
Another distinct feature of this scheme is that the pump, the signal, and the
idler wavelengths are all distinguishable, which is very useful for quantum
communications.Comment: 4 pages, submitted to PR
Experimental Entanglement Concentration and Universal Bell-state Synthesizer
We report a novel Bell-state synthesizer in which an interferometric
entanglement concentration scheme is used. An initially mixed polarization
state from type-II spontaneous parametric down-conversion becomes entangled
after the interferometric entanglement concentrator. This Bell-state
synthesizer is universal in the sense that the output polarization state is not
affected by spectral filtering, crystal thickness, and, most importantly, the
choice of pump source. It is also robust against environmental disturbance and
a more general state, partially mixedpartially entangled state, can be
readily generated as well.Comment: Minor update (Newer data
Interferometric Bell-state preparation using femtosecond-pulse-pumped Spontaneous Parametric Down-Conversion
We present theoretical and experimental study of preparing maximally
entangled two-photon polarization states, or Bell states, using femtosecond
pulse pumped spontaneous parametric down-conversion (SPDC). First, we show how
the inherent distinguishability in femtosecond pulse pumped type-II SPDC can be
removed by using an interferometric technique without spectral and amplitude
post-selection. We then analyze the recently introduced Bell state preparation
scheme using type-I SPDC. Theoretically, both methods offer the same results,
however, type-I SPDC provides experimentally superior methods of preparing Bell
states in femtosecond pulse pumped SPDC. Such a pulsed source of highly
entangled photon pairs is useful in quantum communications, quantum
cryptography, quantum teleportation, etc.Comment: 11 pages, two-column format, to appear in PR
Possible Origin of Antimatter Regions in the Baryon Dominated Universe
We discuss the evolution of U(1) symmetric scalar field at the inflation
epoch with a pseudo Nambu-Goldstone tilt revealing after the end of exponential
expansion of the Universe. The U(1) symmetry is supposed to be associated with
baryon charge. It is shown that quantum fluctuations lead in natural way to
baryon dominated Universe with antibaryon excess regions. The range of
parameters is calculated at which the fraction of Universe occupied by
antimatter and the size of antimatter regions satisfy the observational
constraints, survive to the modern time and lead to effects, accessible to
experimental search for antimatter.Comment: 10 pages, 1 figur
Dark sectors 2016 Workshop: community report
This report, based on the Dark Sectors workshop at SLAC in April 2016,
summarizes the scientific importance of searches for dark sector dark matter
and forces at masses beneath the weak-scale, the status of this broad
international field, the important milestones motivating future exploration,
and promising experimental opportunities to reach these milestones over the
next 5-10 years
- …