94 research outputs found
Effect of temperature anisotropy on various modes and instabilities for a magnetized non-relativistic bi-Maxwellian plasma
Using kinetic theory for homogeneous collisionless magnetized plasmas, we
present an extended review of the plasma waves and instabilities and discuss
the anisotropic response of generalized relativistic dielectric tensor and
Onsager symmetry properties for arbitrary distribution functions. In general,
we observe that for such plasmas only those electromagnetic modes whose
magnetic field perturbations are perpendicular to the ambient magneticeld,
i.e.,B1 \perp B0, are effected by the anisotropy. However, in oblique
propagation all modes do show such anisotropic effects. Considering the
non-relativistic bi-Maxwellian distribution and studying the relevant
components of the general dielectric tensor under appropriate conditions, we
derive the dispersion relations for various modes and instabilities. We show
that only the electromagnetic R- and L- waves, those derived from them and the
O-mode are affected by thermal anisotropies, since they satisfy the required
condition B1\perpB0. By contrast, the perpendicularly propagating X-mode and
the modes derived from it (the pure transverse X-mode and Bernstein mode) show
no such effect. In general, we note that the thermal anisotropy modifies the
parallel propagating modes via the parallel acoustic effect, while it modifies
the perpendicular propagating modes via the Larmor-radius effect. In oblique
propagation for kinetic Alfven waves, the thermal anisotropy affects the
kinetic regime more than it affects the inertial regime. The generalized fast
mode exhibits two distinct acoustic effects, one in the direction parallel to
the ambient magnetic field and the other in the direction perpendicular to it.
In the fast-mode instability, the magneto-sonic wave causes suppression of the
firehose instability. We discuss all these propagation characteristics and
present graphic illustrations
Recommended from our members
Contemporary incidence and risk factors of post transplant Erythrocytosis in deceased donor kidney transplantation.
BACKGROUND: Post-Transplant erythrocytosis (PTE) has not been studied in large recent cohorts. In this study, we evaluated the incidence, risk factors, and outcome of PTE with current transplant practices using the present World Health Organization criteria to define erythrocytosis. We also tested the hypothesis that the risk of PTE is greater with higher-quality kidneys.
METHODS: We utilized the Deceased Donor Study which is an ongoing, multicenter, observational study of deceased donors and their kidney recipients that were transplanted between 2010 and 2013 across 13 centers. Eryrthocytosis is defined by hemoglobin\u3e 16.5 g/dL in men and\u3e 16 g/dL in women. Kidney quality is measured by Kidney Donor Profile Index (KDPI).
RESULTS: Of the 1123 recipients qualified to be in this study, PTE was observed at a median of 18 months in 75 (6.6%) recipients. Compared to recipients without PTE, those with PTE were younger [mean 48±11 vs 54±13 years, p \u3c 0.001], more likely to have polycystic kidney disease [17% vs 6%, p \u3c 0.001], have received kidneys from younger donors [36 ±13 vs 41±15 years], and be on RAAS inhibitors [35% vs 22%, p \u3c 0.001]. Recipients with PTE were less likely to have received kidneys from donors with hypertension [16% vs 32%, p = 0.004], diabetes [1% vs 11%, p = 0.008], and cerebrovascular event (24% vs 36%, p = 0.036). Higher KDPI was associated with decreased PTE risk [HR 0.98 (95% CI: 0.97-0.99)]. Over 60 months of follow-up, only 17 (36%) recipients had sustained PTE. There was no association between PTE and graft failure or mortality.
CONCLUSIONS: The incidence of PTE was low in our study and PTE resolved in majority of patients. Lower KDPI increases risk of PTE. The underutilization of RAAS inhibitors in PTE patients raises the possibility of under-recognition of this phenomenon and should be explored in future studies
Convergent synthesis of new N -substituted 2-{[5-(1H -indol-3-ylmethyl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetamides as suitable therapeutic agents
abstract A series of N-substituted 2-{[5-(1H-indol-3-ylmethyl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetamides (8a-w) was synthesized in three steps. The first step involved the sequential conversion of 2-(1H-indol-3-yl)acetic acid (1) to ester (2) followed by hydrazide (3) formation and finally cyclization in the presence of CS2 and alcoholic KOH yielded 5-(1H-indole-3-yl-methyl)-1,3,4-oxadiazole-2-thiol (4). In the second step, aryl/aralkyl amines (5a-w) were reacted with 2-bromoacetyl bromide (6) in basic medium to yield 2-bromo-N-substituted acetamides (7a-w). In the third step, these electrophiles (7a-w) were reacted with 4 to afford the target compounds (8a-w). Structural elucidation of all the synthesized derivatives was done by 1H-NMR, IR and EI-MS spectral techniques. Moreover, they were screened for antibacterial and hemolytic activity. Enzyme inhibition activity was well supported by molecular docking results, for example, compound 8q exhibited better inhibitory potential against α-glucosidase, while 8g and 8b exhibited comparatively better inhibition against butyrylcholinesterase and lipoxygenase, respectively. Similarly, compounds 8b and 8c showed very good antibacterial activity against Salmonella typhi, which was very close to that of ciprofloxacin, a standard antibiotic used in this study. 8c and 8l also showed very good antibacterial activity against Staphylococcus aureus as well. Almost all compounds showed very slight hemolytic activity, where 8p exhibited the least. Therefore, the molecules synthesized may have utility as suitable therapeutic agents
Quantum Treatment of Kinetic Alfvén Waves Instability in a Dusty Plasma: Magnetized Ions
Kinetic Alfvén wave instability is examined rigorously in a uniform nondegenerate quantum dusty plasma. A linear dispersion relation of kinetic Alfvén wave in inertial regime is derived by incorporating Bohm potential in the linearized Vlasov model. It is found that the quantum correction CQ appears due to the insertion of Bohm potential in Vlasov model and causes the suppression in the Alfvén wave frequency and the growth rates of instability. A number of analytical expressions for various modes of propagation are derived. It is also found that the system parameters, that is, streaming velocity, dust charge, number density, and quantum correction, significantly influence the dispersion relation and the growth rate of instability
- …
