253 research outputs found
STEFANN: Scene Text Editor using Font Adaptive Neural Network
Textual information in a captured scene plays an important role in scene
interpretation and decision making. Though there exist methods that can
successfully detect and interpret complex text regions present in a scene, to
the best of our knowledge, there is no significant prior work that aims to
modify the textual information in an image. The ability to edit text directly
on images has several advantages including error correction, text restoration
and image reusability. In this paper, we propose a method to modify text in an
image at character-level. We approach the problem in two stages. At first, the
unobserved character (target) is generated from an observed character (source)
being modified. We propose two different neural network architectures - (a)
FANnet to achieve structural consistency with source font and (b) Colornet to
preserve source color. Next, we replace the source character with the generated
character maintaining both geometric and visual consistency with neighboring
characters. Our method works as a unified platform for modifying text in
images. We present the effectiveness of our method on COCO-Text and ICDAR
datasets both qualitatively and quantitatively.Comment: Accepted in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 202
Regularized Evolutionary Algorithm for Dynamic Neural Topology Search
Designing neural networks for object recognition requires considerable
architecture engineering. As a remedy, neuro-evolutionary network architecture
search, which automatically searches for optimal network architectures using
evolutionary algorithms, has recently become very popular. Although very
effective, evolutionary algorithms rely heavily on having a large population of
individuals (i.e., network architectures) and is therefore memory expensive. In
this work, we propose a Regularized Evolutionary Algorithm with low memory
footprint to evolve a dynamic image classifier. In details, we introduce novel
custom operators that regularize the evolutionary process of a micro-population
of 10 individuals. We conduct experiments on three different digits datasets
(MNIST, USPS, SVHN) and show that our evolutionary method obtains competitive
results with the current state-of-the-art
Deep Metric and Hash-Code Learning for Content-Based Retrieval of Remote Sensing Images
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The growing volume of Remote Sensing (RS) image archives demands for feature learning techniques and hashing functions which can: (1) accurately represent the semantics in the RS images; and (2) have quasi real-time performance during retrieval. This paper aims to address both challenges at the same time, by learning a semantic-based metric space for content based RS image retrieval while simultaneously producing binary hash codes for an efficient archive search. This double goal is achieved by training a deep network using a combination of different loss functions which, on the one hand, aim at clustering semantically similar samples (i.e., images), and, on the other hand, encourage the network to produce final activation values (i.e., descriptors) that can be easily binarized. Moreover, since RS annotated training images are too few to train a deep network from scratch, we propose to split the image representation problem in two different phases. In the first we use a general-purpose, pre-trained network to produce an intermediate representation, and in the second we train our hashing network using a relatively small set of training images. Experiments on two aerial benchmark archives show that the proposed method outperforms previous state-of-the-art hashing approaches by up to 5.4% using the same number of hash bits per image.EC/H2020/759764/EU/Accurate and Scalable Processing of Big Data in Earth Observation/BigEart
A Realistic Neutrino mixing scheme arising from symmetry
We propose a unique lepton mixing scheme and its association with an exact
hierarchy-philic neutrino mass matrix texture in the light of a hybrid type
seesaw mechanism under the framework of discrete
flavour symmetry
Unveiling Neutrino Mysteries with Symmetry
In the realm of neutrino physics, we grapple with mysteries like the origin
of neutrino masses, the absence of a clear mass hierarchy, and the values of
Majorana phases. To address these puzzles, we extend the Standard Model using
symmetry within the Hybrid seesaw framework. We also introduce an
additional symmetry to constrain some undesirable terms in the Yukawa
Lagrangian, resulting in a unique neutrino mass matrix texture with partial
symmetry. In our study, we propose a novel lepton mixing matrix
that, when connected to this texture, provides valuable phenomenological
insights
- …