65,403 research outputs found
Refinement Types as Higher Order Dependency Pairs
Refinement types are a well-studied manner of performing in-depth analysis on
functional programs. The dependency pair method is a very powerful method used
to prove termination of rewrite systems; however its extension to higher order
rewrite systems is still the object of active research. We observe that a
variant of refinement types allow us to express a form of higher-order
dependency pair criterion that only uses information at the type level, and we
prove the correctness of this criterion
Banana and plantain (Musa) genomics: Missing opportunity?
Poster presented at 2009 Annual Research Meeting of the Generation Challenge Programme. Bamako (Mali), 20-23 Sep 200
On closed subgroups of the group of homeomorphisms of a manifold
Let be a triangulable compact manifold. We prove that, among closed
subgroups of \homeo_{0}(M) (the identity component of the group of
homeomorphisms of ), the subgroup consisting of volume preserving elements
is maximal
From winning strategy to Nash equilibrium
Game theory is usually considered applied mathematics, but a few
game-theoretic results, such as Borel determinacy, were developed by
mathematicians for mathematics in a broad sense. These results usually state
determinacy, i.e. the existence of a winning strategy in games that involve two
players and two outcomes saying who wins. In a multi-outcome setting, the
notion of winning strategy is irrelevant yet usually replaced faithfully with
the notion of (pure) Nash equilibrium. This article shows that every
determinacy result over an arbitrary game structure, e.g. a tree, is
transferable into existence of multi-outcome (pure) Nash equilibrium over the
same game structure. The equilibrium-transfer theorem requires cardinal or
order-theoretic conditions on the strategy sets and the preferences,
respectively, whereas counter-examples show that every requirement is relevant,
albeit possibly improvable. When the outcomes are finitely many, the proof
provides an algorithm computing a Nash equilibrium without significant
complexity loss compared to the two-outcome case. As examples of application,
this article generalises Borel determinacy, positional determinacy of parity
games, and finite-memory determinacy of Muller games
- …