416 research outputs found

    A Survey of Merger Remnants II: The Emerging Kinematic and Photometric Correlations

    Full text link
    This paper is the second in a series exploring the properties of 51 {\it optically} selected, single-nuclei merger remnants. Spectroscopic data have been obtained for a sub-sample of 38 mergers and combined with previously obtained infrared photometry to test whether mergers exhibit the same correlations as elliptical galaxies among parameters such as stellar luminosity and distribution, central stellar velocity dispersion (σ\sigma∘_{\circ}), and metallicity. Paramount to the study is to test whether mergers lie on the Fundamental Plane. Measurements of σ\sigma∘_{\circ} have been made using the Ca triplet absorption line at 8500 {\AA} for all 38 mergers in the sub-sample. Additional measurements of σ\sigma∘_{\circ} were made for two of the mergers in the sub-sample using the CO absorption line at 2.29 \micron. The results indicate that mergers show a strong correlation among the parameters of the Fundamental Plane but fail to show a strong correlation between σ\sigma∘_{\circ} and metallicity (Mg2_{2}). In contrast to earlier studies, the σ\sigma∘_{\circ} of the mergers are consistent with objects which lie somewhere between intermediate-mass and luminous giant elliptical galaxies. However, the discrepancies with earlier studies appears to correlate with whether the Ca triplet or CO absorption lines are used to derive σ\sigma∘_{\circ}, with the latter almost always producing smaller values. Finally, the photometric and kinematic data are used to demonstrate for the first time that the central phase-space density of mergers are equivalent to elliptical galaxies. This resolves a long-standing criticism of the merger hypothesis.Comment: Accepted Astronomical Journal (to appear in January 2006

    Richard G.W. Anderson (1940–2011) and the birth of receptor-mediated endocytosis

    Get PDF
    On March 19, 2011, the discipline of cell biology lost a creative force with the passing of Richard G.W. Anderson, Professor and Chairman of the Department of Cell Biology at the University of Texas Southwestern Medical School. An unabashed chauvinist for cell biology, Dick served for many years on the editorial board of The Journal of Cell Biology and the Council of the American Society for Cell Biology. He died of glioblastoma multiforme six days before his 71st birthday

    Dissipation and Extra Light in Galactic Nuclei: II. 'Cusp' Ellipticals

    Get PDF
    We study the origin and properties of 'extra' or 'excess' central light in the surface brightness profiles of cusp or power-law ellipticals. Dissipational mergers give rise to two-component profiles: an outer profile established by violent relaxation acting on stars present in the progenitors prior to the final merger, and an inner stellar population comprising the extra light, formed in a compact starburst. Combining a large set of hydrodynamical simulations with data that span a broad range of profiles and masses, we show that this picture is borne out -- cusp ellipticals are indeed 'extra light' ellipticals -- and examine how the properties of this component scale with global galaxy properties. We show how to robustly separate the 'extra' light, and demonstrate that observed cusps are reliable tracers of the degree of dissipation in the spheroid-forming merger. We show that the typical degree of dissipation is a strong function of stellar mass, tracing observed disk gas fractions at each mass. We demonstrate a correlation between extra light content and effective radius at fixed mass: systems with more dissipation are more compact. The outer shape of the light profile does not depend on mass, with a mean outer Sersic index ~2.5. We explore how this relates to shapes, kinematics, and stellar population gradients. Simulations with the gas content needed to match observed profiles also reproduce observed age, metallicity, and color gradients, and we show how these can be used as tracers of the degree of dissipation in spheroid formation.Comment: 40 pages, 32 figures, accepted to ApJ (revised to match accepted version

    The Spectrum of Clinical Utilities in Molecular Pathology Testing Procedures for Inherited Conditions and Cancer: A Report of the Association for Molecular Pathology

    Get PDF
    Clinical utility describes the benefits of each laboratory test for that patient. Many stakeholders have adopted narrow definitions for the clinical utility of molecular testing as applied to targeted pharmacotherapy in oncology, regardless of the population tested or the purpose of the testing. This definition does not address all of the important applications of molecular diagnostic testing. Definitions consistent with a patient-centered approach emphasize and recognize that a clinical test result\u27s utility depends on the context in which it is used and are particularly relevant to molecular diagnostic testing because of the nature of the information they provide. Debates surrounding levels and types of evidence needed to properly evaluate the clinical value of molecular diagnostics are increasingly important because the growing body of knowledge, stemming from the increase of genomic medicine, provides many new opportunities for molecular testing to improve health care. We address the challenges in defining the clinical utility of molecular diagnostics for inherited diseases or cancer and provide assessment recommendations. Starting with a modified analytic validity, clinical validity, clinical utility, and ethical, legal, and social implications model for addressing clinical utility of molecular diagnostics with a variety of testing purposes, we recommend promotion of patient-centered definitions of clinical utility that appropriately recognize the valuable contribution of molecular diagnostic testing to improve patient care

    Dissipation and Extra Light in Galactic Nuclei: I. Gas-Rich Merger Remnants

    Full text link
    We study the origin and properties of 'extra' or 'excess' central light in the surface brightness profiles of gas-rich merger remnants. Combining a large set of hydrodynamical simulations with data on observed mergers (spanning a broad range of profiles at various masses and degrees of relaxation), we show how to robustly separate the physically meaningful extra light -- stellar populations formed in a compact central starburst during a gas-rich merger -- from the outer profile established by violent relaxation acting on stars already present in the progenitors prior to the final merger. This separation is sensitive to the profile treatment, and we demonstrate that certain fitting procedures can yield physically misleading results. We show that our method reliably recovers the younger starburst population, and examine how the properties of this component scale with mass, gas content, and other aspects of the progenitors. We consider the time evolution of profiles in different bands, and estimate biases introduced by observational studies at different times and wavelengths. We show that extra light is ubiquitous in observed and simulated gas-rich merger remnants, with sufficient mass (~3-30% of the stellar mass) to explain the discrepancy in the maximum phase-space densities of ellipticals and their progenitor spirals. The nature of this central component provides powerful new constraints on the formation histories of observed systems.Comment: 36 pages, 38 figures, accepted for publication in ApJ (minor revisions to match accepted version

    Star Formation in Galaxy Mergers with Realistic Models of Stellar Feedback & the Interstellar Medium

    Full text link
    We use simulations with realistic models for stellar feedback to study galaxy mergers. These high resolution (1 pc) simulations follow formation and destruction of individual GMCs and star clusters. The final starburst is dominated by in situ star formation, fueled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self gravitating, and forms massive (~10^10 M_sun) GMCs and subsequent super-starclusters (masses up to 10^8 M_sun). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in superclusters which then sink to the center of the galaxy, because feedback efficiently disperses GMCs after they turn several percent of their mass into stars. Most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation microphysics. The same mechanisms that drive this relation in isolated galaxies, in particular radiation pressure from IR photons, extend over seven decades in SFR to regulate star formation in the most extreme starbursts (densities >10^4 M_sun/pc^2). Feedback also drives super-winds with large mass loss rates; but a significant fraction of the wind material falls back onto the disks at later times, leading to higher post-starburst SFRs in the presence of stellar feedback. Strong AGN feedback is required to explain sharp cutoffs in star formation rate. We compare the predicted relic structure, mass profile, morphology, and efficiency of disk survival to simulations which do not explicitly resolve GMCs or feedback. Global galaxy properties are similar, but sub-galactic properties and star formation rates can differ significantly.Comment: 17 pages, 13 figures (+appendices), MNRAS accepted (matches published). Movies of the simulations are available at http://www.tapir.caltech.edu/~phopkins/Site/Movies_sbw_mgr.htm

    Mergers, AGN, and 'Normal' Galaxies: Contributions to the Distribution of Star Formation Rates and Infrared Luminosity Functions

    Full text link
    We use a novel method to predict the contribution of normal star-forming galaxies, merger-induced bursts, and obscured AGN, to IR luminosity functions (LFs) and global SFR densities. We use empirical halo occupation constraints to populate halos with galaxies and determine the distribution of normal and merging galaxies. Each system can then be associated with high-resolution hydrodynamic simulations. We predict the distribution of observed luminosities and SFRs, from different galaxy classes, as a function of redshift from z=0-6. We provide fitting functions for the predicted LFs, quantify the uncertainties, and compare with observations. At all redshifts, 'normal' galaxies dominate the LF at moderate luminosities ~L* (the 'knee'). Merger-induced bursts increasingly dominate at L>>L*; at the most extreme luminosities, AGN are important. However, all populations increase in luminosity at higher redshifts, owing to increasing gas fractions. Thus the 'transition' between normal and merger-dominated sources increases from the LIRG-ULIRG threshold at z~0 to bright Hyper-LIRG thresholds at z~2. The transition to dominance by obscured AGN evolves similarly, at factor of several higher L_IR. At all redshifts, non-merging systems dominate the total luminosity/SFR density, with merger-induced bursts constituting ~5-10% and AGN ~1-5%. Bursts contribute little to scatter in the SFR-stellar mass relation. In fact, many systems identified as 'ongoing' mergers will be forming stars in their 'normal' (non-burst) mode. Counting this as 'merger-induced' star formation leads to a stronger apparent redshift evolution in the contribution of mergers to the SFR density.Comment: 16 pages, 9 figures (+appendices), accepted to MNRAS. A routine to return the galaxy merger rates discussed here is available at http://www.cfa.harvard.edu/~phopkins/Site/mergercalc.htm

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    • 

    corecore