274 research outputs found

    First-line treatment of chronic myeloid leukemia with nilotinib: critical evaluation.

    Get PDF
    The therapeutic landscape of chronic myeloid leukemia (CML) has changed dramatically in the last decade. In particular, the availability of imatinib mesylate, a tyrosine kinase inhibitor targeting BCR-ABL, has led to profound and durable remissions in the majority of patients. However, a couple of issues have emerged and partially obscured this scenario. First, it has become clear that a significant proportion of patients either present with primary resistance to imatinib or develop secondary resistance sooner or later during treatment. Second, although the drug is generally well tolerated, a percentage of patients eventually cease treatment because of toxicity. Bearing this in mind, second-generation tyrosine kinase inhibitors have been introduced, including nilotinib. Phase I and II studies indicate remarkable activity for this compound in CML cases resistant to imatinib, including some of those carrying BCR-ABL1 mutants. More recently, two Phase II studies and a III randomized Phase clinical trial demonstrated the superiority of nilotinib compared with imatinib in terms of complete cytogenetic and major molecular responses, which are two relevant surrogate measures of long-term survival in CML. In this paper, we review the most relevant data on nilotinib as first-line treatment for CML, and discuss the rationale for its routine use, as well as some possible future perspectives for CML patients

    Indirect comparisons of second-generation tyrosine kinase inhibitors in CML: case study using baseline population characteristics

    Get PDF
    The use of indirect comparisons to evaluate the relative effectiveness between two or more treatments is widespread in the literature and continues to grow each year. Appropriate methodologies will be essential for integrating data from various published clinical trials into a systematic framework as part of the increasing emphasis on comparative effectiveness research. This article provides a case study example for clinicians using the baseline study population characteristics and response rates of the tyrosine kinase inhibitors in imatinibresistant or imatinib-intolerant chronic myelogenous leukemia followed by a discussion of indirect comparison methods that are being increasingly implemented to address challenges with these types of comparisons

    Nilotinib: a novel encouraging therapeutic option for chronic myeloid leukemia patients with imatinib resistance or intolerance

    Get PDF
    Although high rates of complete hematologic and cytogenetic remission have been observed in patients with chronic phase chronic myeloid leukemia (CML) treated with imatinib, a short duration of response with eventual emergence of imatinib resistance has also been reported in a subset of CML patients. The most frequent clinically relevant mechanisms that change imatinib sensitivity in BCR-ABL-transformed cells are mutations within the Abl kinase domain, affecting several of its properties. Crystal structure analysis of the Abl-imatinib complex has proven helpful in identifying potential critical residues that hinder interactions of imatinib with mutated Abl. This has led to the development of a second generation of targeted therapies such as nilotinib and dasatinib, already in phase II clinical trials or SKI-606 and MK-0457 in phase I trials. In this review, we discuss the activity of nilotinib, developed by Novartis using a rational drug design strategy in which imatinib served as the lead compound. Preliminary studies demonstrated that nilotinib has more efficacy than imatinib in inhibiting proliferation of BCR-ABL-dependent cells, a relatively safety profile and clinical efficacy in all phases of CML

    Ponatinib in chronic myeloid leukemia (CML): Consensus on patient treatment and management from a European expert panel

    Get PDF
    Five tyrosine kinase inhibitors (TKIs) are currently approved in the European Union for treatment of chronic myeloid leukemia (CML) and all have considerable overlap in their indications. While disease-specific factors such as CML phase, mutational status, and line of treatment are key to TKI selection, other important features must be considered, such as patient-specific comorbidities and TKI safety profiles. Ponatinib, the TKI most recently approved, has demonstrated efficacy in patients with refractory CML, but is associated with an increased risk of arterial hypertension, sometimes severe, and serious arterial occlusive and venous thromboembolic events. A panel of European experts convened to discuss their clinical experience in managing patients with CML. Based on the panel discussions, scenarios in which a CML patient may be an appropriate candidate for ponatinib therapy are described, including presence of the T315I mutation, resistance to other TKIs without the T315I mutation, and intolerance to other TKIs

    Cryptic BCR-ABL fusion gene as variant rearrangement in chronic myeloid leukemia: Molecular cytogenetic characterization and influence on TKIs therapy

    Get PDF
    At diagnosis, about 5% of Chronic Myeloid Leukemia (CML) patients lacks Philadelphia chromosome (Ph), despite the presence of the BCR/ABL rearrangement. Two mechanisms have been proposed about the occurrence of this rearrangement: the first one is a cryptic insertion between chromosomes 9 and 22; the second one involves two sequential translocations: a classic t(9;22) followed by a reverse translocation, which reconstitutes the normal morphology of the partner chromosomes. Out of 398 newly diagnosed CML patients, we selected 12 Ph-negative cases. Six Ph-negative patients treated with tyrosine kinase inhibitors (TKIs) were characterized, in order to study the mechanisms leading to the rearrangement and the eventual correlation with prognosis in treatment with TKIs. FISH analysis revealed cryptic insertion in 5 patients and classic translocation in the last one. In more detail, we observed 4 different patterns of rearrangement, suggesting high genetic heterogeneity of these patients. In our cases, the BCR/ABL rearrangement mapped more frequently on 9q34 region than on 22q11 region, in contrast to previous reports. Four patients, with low Sokal risk, achieved Complete Cytogenetic Response and/or Major Molecular Response after TKIs therapy. Therapy resistance was observed in one patient with duplication of BCR/ABL rearrangement and in another one with high risk. Even if the number patient is inevitably low, we can confirm that the rare Ph-negative CML patients do not constitute a "warning" category, meanwhile the presence of further cytogenetic abnormalities remains an adverse prognostic factor even in TKI era

    In chronic myeloid leukemia patients on second-line tyrosine kinase inhibitor therapy, deep sequencing of BCR-ABL1 at the time of warning may allow sensitive detection of emerging drug-resistant mutants

    Get PDF
    BACKGROUND: Imatinib-resistant chronic myeloid leukemia (CML) patients receiving second-line tyrosine kinase inhibitor (TKI) therapy with dasatinib or nilotinib have a higher risk of disease relapse and progression and not infrequently BCR-ABL1 kinase domain (KD) mutations are implicated in therapeutic failure. In this setting, earlier detection of emerging BCR-ABL1 KD mutations would offer greater chances of efficacy for subsequent salvage therapy and limit the biological consequences of full BCR-ABL1 kinase reactivation. Taking advantage of an already set up and validated next-generation deep amplicon sequencing (DS) assay, we aimed to assess whether DS may allow a larger window of detection of emerging BCR-ABL1 KD mutants predicting for an impending relapse. METHODS: a total of 125 longitudinal samples from 51 CML patients who had acquired dasatinib- or nilotinib-resistant mutations during second-line therapy were analyzed by DS from the time of failure and mutation detection by conventional sequencing backwards. BCR-ABL1/ABL1%(IS) transcript levels were used to define whether the patient had 'optimal response', 'warning' or 'failure' at the time of first mutation detection by DS. RESULTS: DS was able to backtrack dasatinib- or nilotinib-resistant mutations to the previous sample(s) in 23/51 (45 %) pts. Median mutation burden at the time of first detection by DS was 5.5 % (range, 1.5-17.5 %); median interval between detection by DS and detection by conventional sequencing was 3 months (range, 1-9 months). In 5 cases, the mutations were detectable at baseline. In the remaining cases, response level at the time mutations were first detected by DS could be defined as 'Warning' (according to the 2013 ELN definitions of response to 2nd-line therapy) in 13 cases, as 'Optimal response' in one case, as 'Failure' in 4 cases. No dasatinib- or nilotinib-resistant mutations were detected by DS in 15 randomly selected patients with 'warning' at various timepoints, that later turned into optimal responders with no treatment changes. CONCLUSIONS: DS enables a larger window of detection of emerging BCR-ABL1 KD mutations predicting for an impending relapse. A 'Warning' response may represent a rational trigger, besides 'Failure', for DS-based mutation screening in CML patients undergoing second-line TKI therapy

    Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors

    Get PDF
    Abstract Dasatinib and nilotinib are tyrosine kinase inhibitors (TKIs) developed to overcome imatinib resistance in Philadelphia-positive leukemias. To assess how Bcr-Abl kinase domain mutation status evolves during sequential therapy with these TKIs and which mutations may further develop and impair their efficacy, we monitored the mutation status of 95 imatinib-resistant patients before and during treatment with dasatinib and/or nilotinib as second or third TKI. We found that 83% of cases of relapse after an initial response are associated with emergence of newly acquired mutations. However, the spectra of mutants conferring resistance to dasatinib or nilotinib are small and nonoverlapping, except for T315I. Patients already harboring mutations had higher likelihood of relapse associated with development of further mutations compared with patients who did not harbor mutations (23 of 51 vs 8 of 44, respectively, for patients who relapsed on second TKI; 13 of 20 vs 1 of 6, respectively, for patients who relapsed on third TKI)

    Efficacy and safety of nilotinib as frontline treatment in elderly (> 65 years) chronic myeloid leukemia patients outside clinical trials

    Get PDF
    Here, we report real-world evidence on the safety and efficacy of nilotinib as a first-line treatment in elderly patients with chronic phase CML, treated in 18 Italian centers. Sixty patients aged > 65 years (median age 72 years (65-84)) were reported: 13 patients were older than 75 years. Comorbidities were recorded at baseline in 56/60 patients. At 3 months of treatment, all patients obtained complete hematological response (CHR), 43 (71.6%) an early molecular response (EMR), while 47 (78%) reached a complete cytogenetic response (CCyR). At last follow-up, 63.4% of patients still had a deep molecular response (MR4 or better), 21.6% reached MR3 as best response and 11.6% persisted without MR. Most patients (85%) started the treatment at the standard dose (300 mg BID), maintained at 3 months in 80% of patients and at 6 months in 89% of them. At the last median follow-up of 46.3 months, 15 patients discontinued definitively the treatment (8 due to side effects, 4 died for unrelated CML causes, 1 for failure, 2 were lost to follow-up). One patient entered in treatment-free remission. As to safety, 6 patients (10%) experienced cardiovascular events after a median time of 20.9 months from the start. Our data showed that nilotinib could be, as first-line treatment, effective and relatively safe even in elderly CML patients. In this setting, more data in the long term are needed about possible dose reduction to improve the tolerability, while maintaining the optimal molecular response

    Impact of age on efficacy and toxicity of nilotinib in patients with chronic myeloid leukemia in chronic phase : ENEST1st subanalysis

    Get PDF
    Purpose Achievement of deep molecular response with a tyrosine kinase inhibitor in patients with chronic myeloid leukemia (CML) is required to attempt discontinuation of therapy in these patients. The current subanalysis from the Evaluating Nilotinib Efficacy and Safety in Clinical Trials as First-Line Treatment (ENEST1st) study evaluated whether age has an impact on the achievement of deeper molecular responses or safety with frontline nilotinib in patients with CML. Methods ENEST1st is an open-label, multicenter, single-arm, prospective study of nilotinib 300 mg twice daily in patients with newly diagnosed CML in chronic phase. The patients were stratified into the following 4 groups based on age: young (18-39 years), middle age (40-59 years), elderly (60-74 years), and old (>= 75 years). The primary end point was the rate of molecular response 4 ([MR4] BCR-ABL1 Results Of the 1091 patients enrolled, 1089 were considered in the analysis, of whom, 23% (n = 243), 45% (n = 494), 27% (n = 300), and 5% (n = 52) were categorized as young, middle age, elderly, and old, respectively. At 18 months, the rates of MR4 were 33.9% (95% confidence interval [CI], 27.8-40.0%) in the young, 39.6% (95% CI, 35.3-44.0%) in the middle-aged, 40.5% (95% CI, 34.8-46.1%) in the elderly, and 35.4% (95% CI, 21.9-48.9%) in the old patients. Although the incidence of adverse events was slightly different, no new specific safety signals were observed across the 4 age groups. Conclusions This subanalysis of the ENEST1st study showed that age did not have a relevant impact on the deep molecular response rates associated with nilotinib therapy in newly diagnosed patients with CML and eventually on the eligibility of the patients to attempt treatment discontinuation.Peer reviewe
    corecore