6,071 research outputs found
Transforming Graph Representations for Statistical Relational Learning
Relational data representations have become an increasingly important topic
due to the recent proliferation of network datasets (e.g., social, biological,
information networks) and a corresponding increase in the application of
statistical relational learning (SRL) algorithms to these domains. In this
article, we examine a range of representation issues for graph-based relational
data. Since the choice of relational data representation for the nodes, links,
and features can dramatically affect the capabilities of SRL algorithms, we
survey approaches and opportunities for relational representation
transformation designed to improve the performance of these algorithms. This
leads us to introduce an intuitive taxonomy for data representation
transformations in relational domains that incorporates link transformation and
node transformation as symmetric representation tasks. In particular, the
transformation tasks for both nodes and links include (i) predicting their
existence, (ii) predicting their label or type, (iii) estimating their weight
or importance, and (iv) systematically constructing their relevant features. We
motivate our taxonomy through detailed examples and use it to survey and
compare competing approaches for each of these tasks. We also discuss general
conditions for transforming links, nodes, and features. Finally, we highlight
challenges that remain to be addressed
- …