4,754 research outputs found
Transforming Graph Representations for Statistical Relational Learning
Relational data representations have become an increasingly important topic
due to the recent proliferation of network datasets (e.g., social, biological,
information networks) and a corresponding increase in the application of
statistical relational learning (SRL) algorithms to these domains. In this
article, we examine a range of representation issues for graph-based relational
data. Since the choice of relational data representation for the nodes, links,
and features can dramatically affect the capabilities of SRL algorithms, we
survey approaches and opportunities for relational representation
transformation designed to improve the performance of these algorithms. This
leads us to introduce an intuitive taxonomy for data representation
transformations in relational domains that incorporates link transformation and
node transformation as symmetric representation tasks. In particular, the
transformation tasks for both nodes and links include (i) predicting their
existence, (ii) predicting their label or type, (iii) estimating their weight
or importance, and (iv) systematically constructing their relevant features. We
motivate our taxonomy through detailed examples and use it to survey and
compare competing approaches for each of these tasks. We also discuss general
conditions for transforming links, nodes, and features. Finally, we highlight
challenges that remain to be addressed
Parallel Maximum Clique Algorithms with Applications to Network Analysis and Storage
We propose a fast, parallel maximum clique algorithm for large sparse graphs
that is designed to exploit characteristics of social and information networks.
The method exhibits a roughly linear runtime scaling over real-world networks
ranging from 1000 to 100 million nodes. In a test on a social network with 1.8
billion edges, the algorithm finds the largest clique in about 20 minutes. Our
method employs a branch and bound strategy with novel and aggressive pruning
techniques. For instance, we use the core number of a vertex in combination
with a good heuristic clique finder to efficiently remove the vast majority of
the search space. In addition, we parallelize the exploration of the search
tree. During the search, processes immediately communicate changes to upper and
lower bounds on the size of maximum clique, which occasionally results in a
super-linear speedup because vertices with large search spaces can be pruned by
other processes. We apply the algorithm to two problems: to compute temporal
strong components and to compress graphs.Comment: 11 page
- …