12 research outputs found
Chiral Single-Chain Magnet: Helically Stacked [Mn<sup>III</sup><sub>2</sub>Cu<sup>II</sup>] Triangles
The
one-dimensional complex [Mn<sup>III</sup><sub>2</sub>Cu<sup>II</sup>(μ<sub>3</sub>-O)(Cl-sao)<sub>3</sub>(EtOH)<sub>2</sub>]·EtOH
(Mn<sub>2</sub>Cu) was obtained by the metal replacement reaction
of the trinuclear manganese complex (Et<sub>3</sub>NH)[Mn<sup>III</sup><sub>3</sub>(μ<sub>3</sub>-O)Cl<sub>2</sub>(Cl-sao)<sub>3</sub>(MeOH)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] with [Cu(acac)<sub>2</sub>]. The Mn<sub>2</sub>Cu chain exhibits single-chain-magnet
behavior with finite-size effects due to its large magnetic anisotropy
Enneanuclear [Ni<sub>6</sub>Ln<sub>3</sub>] Cages: [Ln<sup>III</sup><sub>3</sub>] Triangles Capping [Ni<sup>II</sup><sub>6</sub>] Trigonal Prisms Including a [Ni<sub>6</sub>Dy<sub>3</sub>] Single-Molecule Magnet
The use of (2-(β-naphthalideneamino)-2-hydroxymethyl-1-propanol)
ligand, H<sub>3</sub>L, in Ni/Ln chemistry has led to the isolation
of three new isostructural [Ni<sup>II</sup><sub>6</sub>Ln<sup>III</sup><sub>3</sub>] metallic cages. More specifically, the reaction of
Ni(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O, the corresponding
lanthanide nitrate salt, and H<sub>3</sub>L in MeCN, under solvothermal
conditions in the presence of NEt<sub>3</sub>, led to the isolation
of three complexes with the formulas [Ni<sub>6</sub>Gd<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O (<b>1</b>·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O), [Ni<sub>6</sub>Dy<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·2MeCN·2.7Et<sub>2</sub>O·2.4H<sub>2</sub>O (<b>2</b>·2MeCN·2.7Et<sub>2</sub>O·2.4H<sub>2</sub>O), and [Ni<sub>6</sub>Er<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O (<b>3</b>·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O). The structure of all three clusters
describes a [Ln<sup>III</sup><sub>3</sub>] triangle capping a [Ni<sup>II</sup><sub>6</sub>] trigonal prism. Direct current magnetic susceptibility
studies in the 5–300 K range for complexes <b>1</b>–<b>3</b> reveal the different nature of the magnetic interactions
within the clusters: dominant antiferromagnetic exchange interactions
for the Dy<sup>III</sup> and Er<sup>III</sup> analogues and dominant
ferromagnetic interactions for the Gd<sup>III</sup> example. Alternating
current magnetic susceptibility measurements under zero external dc
field displayed fully formed temperature- and frequency-dependent
out-of-phase peaks for the [Ni<sup>II</sup><sub>6</sub>Dy<sup>III</sup><sub>3</sub>] analogue, establishing its single molecule magnetism
behavior with <i>U</i><sub>eff</sub> = 24 K
Enneanuclear [Ni<sub>6</sub>Ln<sub>3</sub>] Cages: [Ln<sup>III</sup><sub>3</sub>] Triangles Capping [Ni<sup>II</sup><sub>6</sub>] Trigonal Prisms Including a [Ni<sub>6</sub>Dy<sub>3</sub>] Single-Molecule Magnet
The use of (2-(β-naphthalideneamino)-2-hydroxymethyl-1-propanol)
ligand, H<sub>3</sub>L, in Ni/Ln chemistry has led to the isolation
of three new isostructural [Ni<sup>II</sup><sub>6</sub>Ln<sup>III</sup><sub>3</sub>] metallic cages. More specifically, the reaction of
Ni(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O, the corresponding
lanthanide nitrate salt, and H<sub>3</sub>L in MeCN, under solvothermal
conditions in the presence of NEt<sub>3</sub>, led to the isolation
of three complexes with the formulas [Ni<sub>6</sub>Gd<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O (<b>1</b>·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O), [Ni<sub>6</sub>Dy<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·2MeCN·2.7Et<sub>2</sub>O·2.4H<sub>2</sub>O (<b>2</b>·2MeCN·2.7Et<sub>2</sub>O·2.4H<sub>2</sub>O), and [Ni<sub>6</sub>Er<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O (<b>3</b>·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O). The structure of all three clusters
describes a [Ln<sup>III</sup><sub>3</sub>] triangle capping a [Ni<sup>II</sup><sub>6</sub>] trigonal prism. Direct current magnetic susceptibility
studies in the 5–300 K range for complexes <b>1</b>–<b>3</b> reveal the different nature of the magnetic interactions
within the clusters: dominant antiferromagnetic exchange interactions
for the Dy<sup>III</sup> and Er<sup>III</sup> analogues and dominant
ferromagnetic interactions for the Gd<sup>III</sup> example. Alternating
current magnetic susceptibility measurements under zero external dc
field displayed fully formed temperature- and frequency-dependent
out-of-phase peaks for the [Ni<sup>II</sup><sub>6</sub>Dy<sup>III</sup><sub>3</sub>] analogue, establishing its single molecule magnetism
behavior with <i>U</i><sub>eff</sub> = 24 K
A family of hexanuclear Mn(III) single-molecule magnets
<div><p>In an attempt to employ salicylic acid (HOsalH), 2,6-dihydroxy benzoic acid {(HO)<sub>2</sub>PhCO<sub>2</sub>H}, and naphthalene-1,8-dicarboxylic acid {1,8-naph(CO<sub>2</sub>H)<sub>2</sub>} in Mn(III) salicylaldoximate chemistry as a means to alter the structural identity of the hexanucluear clusters usually obtained from this reaction system, we have isolated a family of hexanuclear Mn(III) complexes based on salicyladloxime (saoH<sub>2</sub>) and 2-hydroxy-1-naphthaldehyde oxime (naphthsaoH<sub>2</sub>). Five hexanuclear clusters, [Mn<sub>6</sub>O<sub>2</sub>(sao)<sub>6</sub>(HOsal)<sub>2</sub>(EtOH)<sub>4</sub>]·EtOH (<b>1</b>·EtOH), [Mn<sub>6</sub>O<sub>2</sub>(sao)<sub>6</sub>{1,8-naph(CO<sub>2</sub>Me)(CO<sub>2</sub>)}<sub>2</sub>(MeOH)<sub>6</sub>]·3MeOH (<b>2</b>·3MeOH), [Mn<sub>6</sub>O<sub>2</sub>(naphthsao)<sub>6</sub>{1,8-naph(CO<sub>2</sub>Et)(CO<sub>2</sub>)}<sub>2</sub>(EtOH)<sub>6</sub>] (<b>3</b>·2MeOH), [Mn<sub>6</sub>O<sub>2</sub>(naphthsao)<sub>6</sub>(MeCO<sub>2</sub>)<sub>2</sub>(EtOH)<sub>4</sub>]·2H<sub>2</sub>O (<b>4</b>·2H<sub>2</sub>O), and [Mn<sub>6</sub>O<sub>2</sub>(naphthsao)<sub>6</sub>{(HO)<sub>2</sub>PhCO<sub>2</sub>}<sub>2</sub>(EtOH)<sub>4</sub>]·4EtOH (<b>5</b>·4EtOH), have been synthesized and characterized by single-crystal X-ray crystallography. The magnetic properties of <b>3</b>, <b>4</b>, and <b>5</b> are discussed.</p></div
Supramolecular Entanglement from Interlocked Molecular Nanomagnets
The trinuclear nanomagnet [MnIII3O(Et-sao)3(MeOH)3](ClO4) (1) has been utilized as a building block for the construction of the hexanuclear cluster [{MnIII3O(Et-sao)3(O2CPh)(EtOH)}2{4,4′-bpe}2] (3) that conforms to a rectangle and the two-dimensional coordination polymer {[MnIII3O(sao)3(4,4′-bpe)1.5]ClO4·3MeOH}n (2·3MeOH). The latter exhibits an unprecedented type of entanglement that is based on host guest interactions. The polygon versus the polymer is rationalized in terms of changing an auxiliary anion that influences the arrangement of the potentially “vacant” coordination axes on each MnIII ion of the trinuclear precursor and thereby directing the self-assembly process
Toward a Magnetostructural Correlation for a Family of Mn<sub>6</sub> SMMs
We have structurally and magnetically characterized a total of 12 complexes based on the Single-Molecule Magnet (SMM) [MnIII6O2(sao)6(O2CH)2(MeOH) 4] (1) (where sao2- is the dianion of salicylaldoxime
or 2-hydroxybenzaldeyhyde oxime) that display analogous structural cores but remarkably different magnetic
behaviors. Via the use of derivatized oxime ligands and bulky carboxylates we show that it is possible to
deliberately increase the value of the spin ground state of the complexes [Mn6O2(Me-sao)6(O2CCPh3)2(EtOH)4] (2), [Mn6O2(Et-sao)6(O2CCMe3)2(EtOH)5] (3), [Mn6O2(Et-sao)6(O2CPh2OPh)2(EtOH)4] (4), [Mn6O2(Et-sao)6(O2CPh4OPh)2(EtOH)4(H2O)2] (5), [Mn6O2(Me-sao)6(O2CPhBr)2(EtOH)6] (6), [Mn6O2(Et-sao)6(O2CPh)2(EtOH)4(H2O)2] (7), [Mn6O2(Et-sao)6{O2CPh(Me)2}2(EtOH)6] (8), [Mn6O2(Et-sao)6(O2C11H15)2(EtOH)6] (9),
[Mn6O2(Me-sao)6(O2C-th)2(EtOH)4(H2O)2] (10), [Mn6O2(Et-sao)6(O2CPhMe)2(EtOH)4(H2O)2] (11), and [Mn6O2(Et-sao)6(O2C12H17)2(EtOH)4(H2O)2] (12) (Et-saoH2 = 2-hydroxypropiophenone oxime, Me-saoH2 = 2-hydroxyethanone oxime, HO2CCPh3 = triphenylacetic acid, HO2CCMe3 = pivalic acid, HO2CPh2OPh =
2-phenoxybenzoic acid, HO2CPh4OPh = 4-phenoxybenzoic acid, HO2CPhBr = 4-bromobenzoic acid, HO2CPh(Me)2 = 3,5-dimethylbenzoic acid, HO2C11H15 = adamantane carboxylic acid, HO2C-th = 3-thiophene
carboxylic acid, HO2CPhMe = 4-methylbenzoic acid, and HO2C12H17 = adamantane acetic acid) in a
stepwise fashion from S = 4 to S = 12 and, in-so-doing, enhance the energy barrier for magnetization
reorientation to record levels. The change from antiferromagnetic to ferromagnetic exchange stems from
the “twisting” or “puckering” of the (−Mn−N−O−)3 ring, as evidenced by the changes in the Mn−N−O−Mn torsion angles
Toward a Magnetostructural Correlation for a Family of Mn<sub>6</sub> SMMs
We have structurally and magnetically characterized a total of 12 complexes based on the Single-Molecule Magnet (SMM) [MnIII6O2(sao)6(O2CH)2(MeOH) 4] (1) (where sao2- is the dianion of salicylaldoxime
or 2-hydroxybenzaldeyhyde oxime) that display analogous structural cores but remarkably different magnetic
behaviors. Via the use of derivatized oxime ligands and bulky carboxylates we show that it is possible to
deliberately increase the value of the spin ground state of the complexes [Mn6O2(Me-sao)6(O2CCPh3)2(EtOH)4] (2), [Mn6O2(Et-sao)6(O2CCMe3)2(EtOH)5] (3), [Mn6O2(Et-sao)6(O2CPh2OPh)2(EtOH)4] (4), [Mn6O2(Et-sao)6(O2CPh4OPh)2(EtOH)4(H2O)2] (5), [Mn6O2(Me-sao)6(O2CPhBr)2(EtOH)6] (6), [Mn6O2(Et-sao)6(O2CPh)2(EtOH)4(H2O)2] (7), [Mn6O2(Et-sao)6{O2CPh(Me)2}2(EtOH)6] (8), [Mn6O2(Et-sao)6(O2C11H15)2(EtOH)6] (9),
[Mn6O2(Me-sao)6(O2C-th)2(EtOH)4(H2O)2] (10), [Mn6O2(Et-sao)6(O2CPhMe)2(EtOH)4(H2O)2] (11), and [Mn6O2(Et-sao)6(O2C12H17)2(EtOH)4(H2O)2] (12) (Et-saoH2 = 2-hydroxypropiophenone oxime, Me-saoH2 = 2-hydroxyethanone oxime, HO2CCPh3 = triphenylacetic acid, HO2CCMe3 = pivalic acid, HO2CPh2OPh =
2-phenoxybenzoic acid, HO2CPh4OPh = 4-phenoxybenzoic acid, HO2CPhBr = 4-bromobenzoic acid, HO2CPh(Me)2 = 3,5-dimethylbenzoic acid, HO2C11H15 = adamantane carboxylic acid, HO2C-th = 3-thiophene
carboxylic acid, HO2CPhMe = 4-methylbenzoic acid, and HO2C12H17 = adamantane acetic acid) in a
stepwise fashion from S = 4 to S = 12 and, in-so-doing, enhance the energy barrier for magnetization
reorientation to record levels. The change from antiferromagnetic to ferromagnetic exchange stems from
the “twisting” or “puckering” of the (−Mn−N−O−)3 ring, as evidenced by the changes in the Mn−N−O−Mn torsion angles
Asymmetric [2+2+1] cyclopentannulation of olefins. Ring expansion of 2-N-methyl-N-tosyl-cyclobutanone
alpha-N-Methyl-N-tosyl cyclobutanones 2 which had been previously prepared in good yields and high enantiomeric excesses from olefins and chiral keteniminium salts have been converted into the corresponding oxiranes 3 by reaction with dimethylsulfonium methylid. The stereochemistry of this reaction was found to be dependent on several factors which have been analyzed. Treatment of these oxiranes with a stoichiometric amount of lithium iodide in refluxing tetrahydrofuran gave excellent yields of monocyclic or fused cyclopentenones 4 resulting from a P-elimination of N-methyl-N-tosylamide from a primarily formed cyclopentanone. The ring-expansion was totally selective but for oxiranes attached to a bicyclo[4.2.0]octanone system. In all cases, the enantiomeric purities of the starting cyclobutanones were preserved throughout the sequence which thus represents a useful [2+2+1] strategy for the cyclopentannulation of olefins. (C) 2002 Elsevier Science Ltd. All rights reserved
Rare Oxidation-State Combinations and Unusual Structural Motifs in Hexanuclear Mn Complexes Using 2-Pyridyloximate Ligands
The use of phenyl-2-pyridyl ketone oxime and di-2-pyridyl ketone oxime in Mn chemistry has led to hexanuclear clusters with unprecedented (MnII4MnIIIMnIV) or extremely rare (MnIIMnIII5 and MnII3MnIII3) metal oxidation-state combinations and uncommon structural motifs
Rare Oxidation-State Combinations and Unusual Structural Motifs in Hexanuclear Mn Complexes Using 2-Pyridyloximate Ligands
The use of phenyl-2-pyridyl ketone oxime and di-2-pyridyl ketone oxime in Mn chemistry has led to hexanuclear clusters with unprecedented (MnII4MnIIIMnIV) or extremely rare (MnIIMnIII5 and MnII3MnIII3) metal oxidation-state combinations and uncommon structural motifs
