67 research outputs found

    A global data set of soil particle size properties

    Get PDF
    A standardized global data set of soil horizon thicknesses and textures (particle size distributions) was compiled. This data set will be used by the improved ground hydrology parameterization designed for the Goddard Institute for Space Studies General Circulation Model (GISS GCM) Model 3. The data set specifies the top and bottom depths and the percent abundance of sand, silt, and clay of individual soil horizons in each of the 106 soil types cataloged for nine continental divisions. When combined with the World Soil Data File, the result is a global data set of variations in physical properties throughout the soil profile. These properties are important in the determination of water storage in individual soil horizons and exchange of water with the lower atmosphere. The incorporation of this data set into the GISS GCM should improve model performance by including more realistic variability in land-surface properties

    Towards a New Food System Assessment: AgMIP Coordinated Global and Regional Assessments of Climate Change

    Get PDF
    Agricultural stakeholders need more credible information on which to base adaptation and mitigation policy decisions. In order to provide this, we must improve the rigor of agricultural modelling. Ensemble approaches can be used to address scale issues and integrated teams can overcome disciplinary silos. The AgMIP Coordinated Global and Regional Assessments of Climate Change and Food Security (CGRA) has the goal to link agricultural systems models using common protocols and scenarios to significantly improve understanding of climate effects on crops, livestock and livelihoods across multiple scales. The AgMIP CGRA assessment brings together experts in climate, crop, livestock, economics, and food security to develop Protocols to guide the process throughout the assessment. Scenarios are designed to consistently combine elements of intertwined storylines of future society including, socioeconomic development, greenhouse gas concentrations, and specific pathways of agricultural sector development. Through these approaches, AgMIP partners around the world are providing an evidence base for their stakeholders as they make decisions and investments

    Development of a Green Roof Environmental Monitoring and Meteorological Network in New York City

    Get PDF
    Green roofs (with plant cover) are gaining attention in the United States as a versatile new environmental mitigation technology. Interest in data on the environmental performance of these systems is growing, particularly with respect to urban heat island mitigation and stormwater runoff control. We are deploying research stations on a diverse array of green roofs within the New York City area, affording a new opportunity to monitor urban environmental conditions at small scales. We show some green roof systems being monitored, describe the sensor selection employed to study energy balance, and show samples of selected data. These roofs should be superior to other urban rooftops as sites for meteorological stations

    Assessing Ozone-Related Health Impacts under a Changing Climate

    Get PDF
    Climate change may increase the frequency and intensity of ozone episodes in future summers in the United States. However, only recently have models become available that can assess the impact of climate change on O(3) concentrations and health effects at regional and local scales that are relevant to adaptive planning. We developed and applied an integrated modeling framework to assess potential O(3)-related health impacts in future decades under a changing climate. The National Aeronautics and Space Administration–Goddard Institute for Space Studies global climate model at 4° × 5° resolution was linked to the Penn State/National Center for Atmospheric Research Mesoscale Model 5 and the Community Multiscale Air Quality atmospheric chemistry model at 36 km horizontal grid resolution to simulate hourly regional meteorology and O(3) in five summers of the 2050s decade across the 31-county New York metropolitan region. We assessed changes in O(3)-related impacts on summer mortality resulting from climate change alone and with climate change superimposed on changes in O(3) precursor emissions and population growth. Considering climate change alone, there was a median 4.5% increase in O(3)-related acute mortality across the 31 counties. Incorporating O(3) precursor emission increases along with climate change yielded similar results. When population growth was factored into the projections, absolute impacts increased substantially. Counties with the highest percent increases in projected O(3) mortality spread beyond the urban core into less densely populated suburban counties. This modeling framework provides a potentially useful new tool for assessing the health risks of climate change

    AgMIP Regional Activities in a Global Framework: The Brazil Experience

    Get PDF
    Climate variability and change are projected to increate the frequency of extreme high-temperature events, floods, and droughts, which can lead to subsequent changes in soil moister in many locations (Alexandrov and Hoogenboom, 2000). In Brazil, observations reveal a tendency for increasing frequency of extreme rainfall events particularly in south Brazil (Alexander et al., 2006; Carvalho et al., 2014; Groissman et al., 2005), as well as projections for increasing extremes in both maximum and minimum temperatures and high spatial variability for rainfall under the IPCC SRES A2 and B2 scenarios (Marengo et al., 2009)

    Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    Get PDF
    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies

    New York City Panel on Climate Change 2019 Report Chapter 2: New Methods for Assessing Extreme Temperatures, Heavy Downpours, and Drought

    Get PDF
    This New York City Panel on Climate Change (NPCC3) chapter builds on the projections developed by the second New York City Panel on Climate Change (NPCC2) (Horton et al., 2015). It confirms NPCC2 projections as those of record for the City of New York, presents new methodology related to climate extremes, and describes new methods for developing the next generation of climate projections for the New York metropolitan region. These may be used by the City of New York as it continues to develop flexible adaptation pathways to cope with climate change. The main topics of the climate science chapter are: (1) Comparison of observed temperature and precipitation trends to NPCC2 2015 projections. (2) New methodology for analysis of historical and future projections of heatwaves, humidity, and cold snaps. (3) Improved characterization of observed heavy downpours. (4) Characterization of observed drought using paleoclimate data. (5) Suggested methods for next generation climate risk information
    corecore