324 research outputs found

    Catalytic upgrading of hydrothermal liquefaction biocrudes: Different challenges for different feedstocks

    Get PDF
    Hydrothermal liquefaction (HTL) followed by catalytic hydrotreating of the produced biocrude is increasingly gaining ground as an effective technology for the conversion of biomass into liquid biofuels. A strong advantage of HTL resides in its great flexibility towards the feedstock, since it is able to treat a large number of different organic substrates, ranging from dry to wet residual biomass. Nevertheless, the characteristics of biocrudes from different typologies of organic materials result in different challenges to be met during the hydrotreating step, leading to differences in heteroatoms removal and in the typology and composition of the targeted products. In this work, biocrudes were catalytically hydrotreated with a commercial NiMo/Al2O3 catalyst at different temperatures and pressures. Sewage sludge biocrude was found to be very promising for the production of straight-chain hydrocarbons in the diesel range, with considerable heteroatoms removal even at mild hydrotreating conditions. Similar results were shown by algal biocrude, although complete denitrogenation is challenging. Upgraded biocrudes from lignocellulosic feedstock (miscanthus) showed high yields in the gasoline range, with a remarkable content of aromatics. Operating at a higher H2 pressure was found to be crucial to prevent coking and decarboxylation reactions.Comment: Accepted manuscript for publication in Renewable Energ

    Online Condition Monitoring of Rotating Machines by Self-Powered Piezoelectric Transducer from Real-Time Experimental Investigations

    Get PDF
    This paper investigates self-powering online condition monitoring for rotating machines by the piezoelectric transducer as an energy harvester and sensor. The method is devised for real-time working motors and relies on self-powered wireless data transfer where the data comes from the piezoelectric transducer’s output. Energy harvesting by Piezoceramic is studied under real-time motor excitations, followed by power optimization schemes. The maximum power and root mean square power generation from the motor excitation are 13.43 mW/g(2) and 5.9 mW/g(2), which can be enough for providing autonomous wireless data transfer. The piezoelectric transducer sensitivity to the fault is experimentally investigated, showing the considerable fault sensitivity of piezoelectric transducer output to the fault. For instance, the piezoelectric transducer output under a shaft-misalignment fault is more than 200% higher than the healthy working conditions. This outcome indicates that the monitoring of rotating machines can be achieved by using a self-powered system of the piezoelectric harvesters. Finally, a discussion on the feasible self-powered online condition monitoring is presented
    • …
    corecore