153 research outputs found
Spin Path Integrals and Generations
The spin of a free electron is stable but its position is not. Recent quantum
information research by G. Svetlichny, J. Tolar, and G. Chadzitaskos have shown
that the Feynman \emph{position} path integral can be mathematically defined as
a product of incompatible states; that is, as a product of mutually unbiased
bases (MUBs). Since the more common use of MUBs is in finite dimensional
Hilbert spaces, this raises the question "what happens when \emph{spin} path
integrals are computed over products of MUBs?" Such an assumption makes spin no
longer stable. We show that the usual spin-1/2 is obtained in the long-time
limit in three orthogonal solutions that we associate with the three elementary
particle generations. We give applications to the masses of the elementary
leptons.Comment: 20 pages, 2 figures, accepted at Foundations of Physic
Einstein energy associated with the Friedmann -Robertson -Walker metric
Following Einstein's definition of Lagrangian density and gravitational field
energy density (Einstein, A., Ann. Phys. Lpz., 49, 806 (1916); Einstein, A.,
Phys. Z., 19, 115 (1918); Pauli, W., {\it Theory of Relativity}, B.I.
Publications, Mumbai, 1963, Trans. by G. Field), Tolman derived a general
formula for the total matter plus gravitational field energy () of an
arbitrary system (Tolman, R.C., Phys. Rev., 35(8), 875 (1930); Tolman, R.C.,
{\it Relativity, Thermodynamics & Cosmology}, Clarendon Press, Oxford, 1962));
Xulu, S.S., arXiv:hep-th/0308070 (2003)). For a static isolated system, in
quasi-Cartesian coordinates, this formula leads to the well known result , where is the
determinant of the metric tensor and is the energy momentum tensor of
the {\em matter}. Though in the literature, this is known as "Tolman Mass", it
must be realized that this is essentially "Einstein Mass" because the
underlying pseudo-tensor here is due to Einstein. In fact, Landau -Lifshitz
obtained the same expression for the "inertial mass" of a static isolated
system without using any pseudo-tensor at all and which points to physical
significance and correctness of Einstein Mass (Landau, L.D., and Lifshitz,
E.M., {\it The Classical Theory of Fields}, Pergamon Press, Oxford, 2th ed.,
1962)! For the first time we apply this general formula to find an expression
for for the Friedmann- Robertson -Walker (FRW) metric by using the same
quasi-Cartesian basis. As we analyze this new result, physically, a spatially
flat model having no cosmological constant is suggested. Eventually, it is seen
that conservation of is honoured only in the a static limit.Comment: By mistake a marginally different earlier version was loaded, now the
journal version is uploade
Energetics of the Einstein-Rosen spacetime
A study covering some aspects of the Einstein--Rosen metric is presented. The
electric and magnetic parts of the Weyl tensor are calculated. It is shown that
there are no purely magnetic E--R spacetimes, and also that a purely electric
E--R spacetime is necessarily static. The geodesics equations are found and
circular ones are analyzed in detail. The super--Poynting and the
``Lagrangian'' Poynting vectors are calculated and their expressions are found
for two specific examples. It is shown that for a pulse--type solution, both
expressions describe an inward radially directed flow of energy, far behind the
wave front. The physical significance of such an effect is discussed.Comment: 19 pages Latex.References added and updated.To appear in
Int.J.Theor.Phy
Adiabatic following criterion, estimation of the nonadiabatic excitation fraction and quantum jumps
An accurate theory describing adiabatic following of the dark, nonabsorbing
state in the three-level system is developed. An analytical solution for the
wave function of the particle experiencing Raman excitation is found as an
expansion in terms of the time varying nonadiabatic perturbation parameter. The
solution can be presented as a sum of adiabatic and nonadiabatic parts. Both
are estimated quantitatively. It is shown that the limiting value to which the
amplitude of the nonadiabatic part tends is equal to the Fourier component of
the nonadiabatic perturbation parameter taken at the Rabi frequency of the
Raman excitation. The time scale of the variation of both parts is found. While
the adiabatic part of the solution varies slowly and follows the change of the
nonadiabatic perturbation parameter, the nonadiabatic part appears almost
instantly, revealing a jumpwise transition between the dark and bright states.
This jump happens when the nonadiabatic perturbation parameter takes its
maximum value.Comment: 33 pages, 8 figures, submitted to PRA on 28 Oct. 200
On Isotropic Turbulence in the Dark Fluid Universe
As first part of this work, experimental information about the decay of
isotropic turbulence in ordinary hydrodynamics, u^2(t) proportional to
t^{-6/5}, is used as input in FRW equations in order to investigate how an
initial fraction f of turbulent kinetic energy in the cosmic fluid influences
the cosmological development in the late, quintessence/phantom, universe. First
order perturbative theory to the first order in f is employed. It turns out
that both in the Hubble factor, and in the energy density, the influence from
the turbulence fades away at late times. The divergences in these quantities
near the Big Rip behave essentially as in a non-turbulent fluid. However, for
the scale factor, the turbulence modification turns out to diverge
logarithmically. As second part of our work, we consider the full FRW equation
in which the turbulent part of the dark energy is accounted for by a separate
term. It is demonstrated that turbulence occurrence may change the future
universe evolution due to dissipation of dark energy. For instance,
phantom-dominated universe becomes asymptotically a de Sitter one in the
future, thus avoiding the Big Rip singularity.Comment: 10 pages, no figures, significant revision. Matches published versio
Exponential Metric Fields
The Laser Interferometer Space Antenna (LISA) mission will use advanced
technologies to achieve its science goals: the direct detection of
gravitational waves, the observation of signals from compact (small and dense)
stars as they spiral into black holes, the study of the role of massive black
holes in galaxy evolution, the search for gravitational wave emission from the
early Universe. The gravitational red-shift, the advance of the perihelion of
Mercury, deflection of light and the time delay of radar signals are the
classical tests in the first order of General Relativity (GR). However, LISA
can possibly test Einstein's theories in the second order and perhaps, it will
show some particular feature of non-linearity of gravitational interaction. In
the present work we are seeking a method to construct theoretical templates
that limit in the first order the tensorial structure of some metric fields,
thus the non-linear terms are given by exponential functions of gravitational
strength. The Newtonian limit obtained here, in the first order, is equivalent
to GR.Comment: Accepted for publication in Astrophysics and Space Science, 17 page
Teleparallel Energy-Momentum Distribution of Spatially Homogeneous Rotating Spacetimes
The energy-momentum distribution of spatially homogeneous rotating spacetimes
in the context of teleparallel theory of gravity is investigated. For this
purpose, we use the teleparallel version of Moller prescription. It is found
that the components of energy-momentum density are finite and well-defined but
are different from General Relativity. However, the energy-momentum density
components become the same in both theories under certain assumptions. We also
analyse these quantities for some special solutions of the spatially
homogeneous rotating spacetimes.Comment: 12 pages, accepted for publication in Int. J. Theor. Phy
The averaged tensors of the relative energy-momentum and angular momentum in general relativity and some their applications
There exist at least a few different kind of averaging of the differences of
the energy-momentum and angular momentum in normal coordinates {\bf NC(P)}
which give tensorial quantities. The obtained averaged quantities are
equivalent mathematically because they differ only by constant scalar
dimensional factors. One of these averaging was used in our papers [1-8] giving
the {\it canonical superenergy and angular supermomentum tensors}.
In this paper we present another averaging of the differences of the
energy-momentum and angular momentum which gives tensorial quantities with
proper dimensions of the energy-momentum and angular momentum densities. But
these averaged relative energy-momentum and angular momentum tensors, closely
related to the canonical superenergy and angular supermomentum tensors, {\it
depend on some fundamental length }.
The averaged relative energy-momentum and angular momentum tensors of the
gravitational field obtained in the paper can be applied, like the canonical
superenergy and angular supermomentum tensors, to {\it coordinate independent}
analysis (local and in special cases also global) of this field.
We have applied the averaged relative energy-momentum tensors to analyze
vacuum gravitational energy and momentum and to analyze energy and momentum of
the Friedman (and also more general) universes. The obtained results are very
interesting, e.g., the averaged relative energy density is {\it positive
definite} for the all Friedman universes.Comment: 30 pages, minor changes referring to Kasner universe
Exact solutions of the radial Schrodinger equation for some physical potentials
By using an ansatz for the eigenfunction, we have obtained the exact
analytical solutions of the radial Schrodinger equation for the pseudoharmonic
and Kratzer potentials in two dimensions. The energy levels of all the bound
states are easily calculated from this eigenfunction ansatz. The normalized
wavefunctions are also obtained.Comment: 13 page
Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation
We propose a theory which deals with the structure and interactions of volume
elements in liquid helium II. The approach consists of two nested models linked
via parametric space. The short-wavelength part describes the interior
structure of the fluid element using a non-perturbative approach based on the
logarithmic wave equation; it suggests the Gaussian-like behaviour of the
element's interior density and interparticle interaction potential. The
long-wavelength part is the quantum many-body theory of such elements which
deals with their dynamics and interactions. Our approach leads to a unified
description of the phonon, maxon and roton excitations, and has noteworthy
agreement with experiment: with one essential parameter to fit we reproduce at
high accuracy not only the roton minimum but also the neighboring local maximum
as well as the sound velocity and structure factor.Comment: 9 pages, 6 figure
- …