688 research outputs found

    A triple-GEM telescope for the TOTEM experiment

    Get PDF
    The TOTEM experiment at LHC has chosen the triple Gas Electron Multiplier (GEM) technology for its T2 telescope which will provide charged track reconstruction in the rapidity range 5.3<|eta|<6.5 and a fully inclusive trigger for diffractive events. GEMs are gas-filled detectors that have the advantageous decoupling of the charge amplification structure from the charge collection and readout structure. Furthermore, they combine good spatial resolution with very high rate capability and a good resistance to radiation. Results from a detailed T2 GEM simulation and from laboratory tests on a final design detector performed at CERN are presented.Comment: To appear in the proceedings of 10th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD06), Siena, Italy, October 1-5 200

    Effects of High Charge Densities in Multi-GEM Detectors

    Full text link
    A comprehensive study, supported by systematic measurements and numerical computations, of the intrinsic limits of multi-GEM detectors when exposed to very high particle fluxes or operated at very large gains is presented. The observed variations of the gain, of the ion back-flow, and of the pulse height spectra are explained in terms of the effects of the spatial distribution of positive ions and their movement throughout the amplification structure. The intrinsic dynamic character of the processes involved imposes the use of a non-standard simulation tool for the interpretation of the measurements. Computations done with a Finite Element Analysis software reproduce the observed behaviour of the detector. The impact of this detailed description of the detector in extreme conditions is multiple: it clarifies some detector behaviours already observed, it helps in defining intrinsic limits of the GEM technology, and it suggests ways to extend them.Comment: 5 pages, 6 figures, 2015 IEEE Nuclear Science Symposiu

    Charge Transfer Properties Through Graphene Layers in Gas Detectors

    Full text link
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.Comment: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference with the 21st Symposium on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors, 4 pages, 8 figure

    Development and applications of the Gas Electron Multiplier

    Get PDF
    The Gas Electron Multiplier (GEM) has been recently developed to cope with the severe requirements of high luminosity particle physics experimentation. With excellent position accuracy and very high rate capability, GEM devices are robust and easy to manufacture. The possibility of cascading two or more multipliers permits to achieve larger gains and more stable operation. We discuss major performances of the new detectors, particularly in view of possible use for high rate portal imaging and medical diagnostics

    The virtual cathode chamber

    Get PDF
    We describe the operating principle and the first experimental results obtained with gas micro-strip detectors realized with anodes only on the active side, the multiplying field being provided from the back-plane and drift electrodes. For high rate operation, the detector has to be implemented on electron conducting supports, with resistivity around 1011Ω^{11}\Omega cm. By construction, the ³Virtual Cathode Chamber² is not subjected to the possibility of discharges between anodes and cathodes, thus avoiding one of the most dangerous problems met with standard micro-strip chambers

    Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors

    Get PDF
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2x2cm2^2, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.Comment: 4pages, 3figures, 13th Pisa Meeting on Advanced Detector

    Characterization of the water diffusion in GEM foil material

    Get PDF
    Systematic studies on the GEM foil material are performed to measure the moisture diffusion rate and saturation level.These studies are important because the presence of this compound inside the detector’s foil can possibly change its mechanical and electrical properties,and in such a way,the detector performance can be affected.To understand this phenomenon,a model is developed with COMSOL Multiphysicsv.4.3 which described the adsorption and diffusion within the geometry of GEM foil,the concentration profiles and the time required to saturate the foil.The COMSOL model is verified by experimental observations on a GEM foil sample.This note will describe the model and its experimental verification results

    Optimization of design and beam test of microstrip gas chambers

    Get PDF
    We describe recent experimental and theoretical work aimed at optimizing the geometry and the operation of micro-strip gas chambers in order to improve their performance and reliability. With the help of a simulation program, we have studied the mechanism of signal propagation and analyzed the effects on signal shape and size of resistivity of strips, grouping of biased strips and presence of a back-plane. Several detectors manufactured according to the results of the study and equipped with fast amplifiers have been installed in a test beam to study general operating characteristics, efficiency and localization accuracy; preliminary results of the data analysis are discussed

    Study of ageing and gain limits of microstrip gas chambers at high rates

    Get PDF
    The CMS experiment comprises MSGCs as one of the key detection elements for high luminosity tracking at LHC. In addition to the high dose rate of 10 mC/year per cm of strip, these detectors have to survive the hostile presence of highly ionizing particles, neutrons low energy gammas and hadrons. In this report we present the results of systematic tests on maximum safe operational gain limits in MSGCs before the discharge. Long term ageing tests performed on prototype open Ibanana¹ modules envisaged to be arranged around the interaction region in the forward part of the CMS tracker show no evidence of gain drop up to equivalent ~ 10 years of LHC operation. A comparison is made between argon and neon gas mixtures with DME in equal proportions by investigating long term irradiation effects on chamber operation by introducing controlled and reproducible pollution in the gas lines

    Discharge studies and prevention in the gas electron multiplier (GEM)

    Get PDF
    The gas electron multiplier (GEM) used as single proportional counter or in a cascade of two or more elements, permits to attain high gains and to perform detection and localization of ionizing tracks at very high radiation rates. As in other micro-pattern detectors, however, the occasional occurrence of heavily ionizing trails may trigger a local breakdown, with possible harmful consequences on the device itself and on the readout electronics. This paper describes a systematic investigation of the discharge mechanisms in single and multiple GEM structures, and suggests various strategies to reduce both the energy and the probability of the discharges
    corecore