845 research outputs found
Subsquares Approach - Simple Scheme for Solving Overdetermined Interval Linear Systems
In this work we present a new simple but efficient scheme - Subsquares
approach - for development of algorithms for enclosing the solution set of
overdetermined interval linear systems. We are going to show two algorithms
based on this scheme and discuss their features. We start with a simple
algorithm as a motivation, then we continue with a sequential algorithm. Both
algorithms can be easily parallelized. The features of both algorithms will be
discussed and numerically tested.Comment: submitted to PPAM 201
Sizing criterial for traction drives
A simplified traction drive fatigue analysis which was derived from the Lundberg-Palmgren theory is measured and the effects of rotational speed, multiplicity of contacts, and variation in the available traction coefficient on traction drive system life, size, and power capacity was investigated. Simplified equations are provided for determining the 90% survival life rating of steel traction drive contacts of arbitrary geometry. References to life modifying factors for material, lubrication, and traction will be made
Simplified fatigue life analysis for traction drive contacts
A simplified fatigue life analysis for traction drive contacts of arbitrary geometry is presented. The analysis is based on the Lundberg-Palmgren theory used for rolling-element bearings. The effects of torque, element size, speed, contact ellipse ratio, and the influence of traction coefficient are shown. The analysis shows that within the limits of the available traction coefficient, traction contacts exhibit longest life at high speeds. Multiple, load-sharing roller arrangements have an advantageous effect on system life, torque capacity, power-to-weight ratio and size
Life analysis of multiroller planetary traction drive
A contact fatigue life analysis was performed for a constant ratio, Nasvytis Multiroller Traction Drive. The analysis was based on the Lundberg-Palmgren method for rolling element bearing life prediction. Life adjustment factors for materials, processing, lubrication and traction were included. The 14.7 to 1 ratio drive consisted of a single stage planetary configuration with two rows of stepped planet rollers of five rollers per row, having a roller cluster diameter of approximately 0.21 m, a width of 0.06 m and a weight of 9 kg. Drive system 10 percent life ranged from 18,800 hours at 16.6 kW (22.2 hp) and 25,000 rpm sun roller speed, to 305 hours at maximum operating conditions of 149 kw (200 hp) and 75,000 rpm sun roller speed. The effect of roller diameter and roller center location on life were determined. It was found that an optimum life geometry exists
Physio-chemical and antibacterial characteristics of pressure spun nylon nanofibres embedded with functional silver nanoparticles
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Date of Acceptance: 05/06/2015A novel and facile approach to prepare hybrid nanoparticle embedded polymer nanofibers using pressurised gyration is presented. Silver nanoparticles and nylon polymer were used in this work. The polymer solution's physical properties, rotating speed and the working pressure had a significant influence on the fibre diameter and the morphology. Fibres in the range of 60–500 nm were spun using 10 wt.%, 15 wt.% and 20 wt.% nylon solutions and these bead-free fibres were processed under 0.2 MPa and 0.3 MPa working pressure and a rotational speed of 36,000 rpm. 1–4 wt.% of Ag was added to these nylon solutions and in the case of wt.% fibres in the range 50–150 nm were prepared using the same conditions of pressurised gyration. Successful incorporation of the Ag nanoparticles in nylon nanofibres was confirmed by using a combination of advanced microscopical techniques and Raman spectrometry was used to study the bonding characteristics of nylon and the Ag nanoparticles. Inductively coupled plasma mass spectroscopy showed a substantial concentration of Ag ions in the nylon fibre matrix which is essential for producing effective antibacterial properties. Antibacterial activity of the Ag-loaded nanofibres shows higher efficacy than nylon nanofibres for Gram-negative Escherichia coli and Pseudomonas aeruginosa microorganisms, and both Ag nanoparticles and the Ag ions were found to be the reason for enhanced cell death in the bacterial solutionPeer reviewe
Phase synchronization in dissipative non-Hermitian coupled quantum systems
We study the interplay between non-Hermitian dynamics and phase synchronization in a system of N bosonic modes coupled to an auxiliary mode. The linearity of the evolution in such a system allows for the derivation of fully analytical results for synchronization conditions. In contrast, analysis at the level of phase dynamics, followed by a transformation to a collective basis allows a complete reduction to an all-to-all coupled Kuramoto model with known analytical solutions. We provide analytical and numerical solutions for systems ranging from a few modes to the macroscopic limit of large N in the presence of inhomogeneous frequency broadening and test the robustness of phase synchronization under the action of external noise
- …