5 research outputs found

    Location of catalase in crystalline peroxisomes of methanol-grown Hansenula polymorpha

    Get PDF
    We have studied the intraperoxisomal location of catalase in peroxisomes of methanol-grown Hansenula polymorpha by (immuno)cytochemical means. In completely crystalline peroxisomes, in which the crystalline matrix is composed of octameric alcohol oxidase (AO) molecules, most of the catalase protein is located in a narrow zone between the crystalloid and the peroxisomal membrane. In non-crystalline organelles the enzyme was present throughout the peroxisomal matrix. Other peroxisomal matrix enzymes studied for comparison, namely dihydroxyacetone synthase, amine oxidase and malate synthase, all were present throughout the AO crystalloid. The advantage of location of catalase at the edges of the AO crystalloids for growth of the organism on methanol is discussed.

    Targeting sequences of the two major peroxisomal proteins in the methylotrophic yeast Hansenula polymorpha

    Get PDF
    Dihydroxyacetone synthase (DAS) and methanol oxidase (MOX) are the major enzyme constituents of the peroxisomal matrix in the methylotrophic yeast Hansenula polymorpha when grown on methanol as a sole carbon source. In order to characterize their topogenic signals the localization of truncated polypeptides and hybrid proteins was analysed in transformed yeast cells by subcellular fractionation and electron microscopy. The C-terminal part of DAS, when fused to the bacterial ╬▓-lactamase or mouse dihydrofolate reductase, directed these hybrid polypeptides to the peroxisome compartment. The targeting signal was further delimited to the extreme C-terminus, comprising the sequence N-K-L-COOH, similar to the recently identified and widely distributed peroxisomal targeting signal (PTS) S-K-L-COOH in firefly luciferase. By an identical approach, the extreme C-terminus of MOX, comprising the tripeptide A-R-F-COOH, was shown to be the PTS of this protein. Furthermore, on fusion of a C-terminal sequence from firefly luciferase including the PTS, ╬▓-lactamase was also imported into the peroxisomes of H. polymorpha. We conclude that, besides the conserved PTS (or described variants), other amino acid sequences with this function have evolved in nature

    Biosynthesis of the peroxisomal dihydroxyacetone synthase from Hansenula polymorpha in Saccharomyces cerevisiae induces growth but not proliferation of peroxisomes

    Get PDF
    The DAS gene of Hansenula polymorpha was expressed in Saccharomyces cerevisiae under the control of different promoters. The heterologously synthesized dihydroxyacetone synthase (DHAS), a peroxisomal enzyme in H. polymorpha, shows enzymatic activity in baker's yeast. The enzyme was imported into the peroxisomes of S. cerevisiae not only under the appropriate physiological conditions for peroxisome proliferation (oleic acid media), but also in glucose-grown cells where it induced the enlargement of the few peroxisomes present. This growth process was not accompanied by an increase in the number of microbodies, which suggests a separate control mechanism for peroxisomal proliferation.

    Identification and Characterization of Cytosolic Hansenula polymorpha Proteins Belonging to the Hsp70 Protein Family

    Get PDF
    We have isolated two members of the Hsp70 protein family from the yeast Hansenula polymorpha using affinity chromatography. Both proteins were located in the cytoplasm. One of these, designated Hsp72, was inducible in nature (e.g. by heat shock). The second protein (designated Hsc74) was constitutively present. Peptides derived from both Hsp72 and Hsc74 showed sequence homology to the cytosolic Saccharomyces cerevisiae Hsp70s, Ssa1p and Ssa2p. The gene encoding Hsp72 (designated HSA1) was cloned, sequenced and used to construct HSA1 disruption and HSA1 overexpression strains. Comparison of the stress tolerances of these strains with those of wild-type H. polymorpha revealed that HSA1 overexpression negatively affected the tolerance of the cells to killing effects of temperature or ethanol, but enhanced the tolerance to copper and cadmium. The tolerance for other chemicals (arsenite, arsenate, H2O2) or to high osmolarity was unaffected by either deletion or overexpression of HSA1. The nucleotide sequence of HSA1 was submitted to the EMBL data library and given the Accession Number Z29379.

    Tools for genetic engineering of the yeast Hansenula polymorpha

    No full text
    Hansenula polymorpha is a methylotrophic yeast species that has favorable properties for heterologous protein production and metabolic engineering. It provides an attractive expression platform with the capability to secrete high levels of commercially important proteins. Over the past few years many efforts have led to advances in the development of this microbial host including the generation of expression vectors containing strong constitutive or inducible promoters and a large array of dominant and auxotrophic markers. Moreover, highly efficient transformation procedures used to generate genetically stable strains are now available. Here, we describe these tools as well as the methods for genetic engineering of H. polymorpha
    corecore