14 research outputs found

    Characterisation and optimisation of a sample preparation method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    Get PDF
    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds. Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). With the present method quantification can be carried out for each carbonyl compound originating from fog, cloud and rain or sampled from the gas- and particle phase in water. Detection limits between 0.01 and 0.17 μmol L−1 were found, depending on carbonyl compounds. Furthermore, best results were found for the derivatisation with a PFBHA concentration of 0.43 mg mL−1 for 24 h followed by a subsequent extraction with dichloromethane for 30 min at pH = 1. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione after a reaction time of 5 h

    Quantum gravitational contributions to quantum electrodynamics

    Full text link
    Quantum electrodynamics describes the interactions of electrons and photons. Electric charge (the gauge coupling constant) is energy dependent, and there is a previous claim that charge is affected by gravity (described by general relativity) with the implication that the charge is reduced at high energies. But that claim has been very controversial with the situation inconclusive. Here I report an analysis (free from earlier controversies) demonstrating that that quantum gravity corrections to quantum electrodynamics have a quadratic energy dependence that result in the reduction of the electric charge at high energies, a result known as asymptotic freedom.Comment: To be published in Nature. 19 pages LaTeX, no figure

    Gauge-invariant quantum gravitational corrections to correlation functions

    Get PDF
    A recent proposal for gauge-invariant observables in inflation [R. Brunetti et al., JHEP 1608 (2016) 032] is examined. We give a generalisation of their construction to general background spacetimes. In flat space, we calculate one-loop graviton corrections to a scalar two-point function in a general gauge for the graviton. We explicitely show how the gauge-dependent terms cancel between the usual self-energy contributions and the additional corrections inherent in these observables. The one-loop corrections have the expected functional form, contrary to another recently studied proposal for gauge-invariant observables [M. B. Fröb, Class. Quant. Grav. 35 (2018) 035005] where this is not the case. Furthermore, we determine the one-loop graviton corrections to the four-point coupling of the gauge-invariant scalar field, and the corresponding running of the coupling constant induced by graviton loops. Interestingly, the β function is negative for all values of the non-minimal coupling of the scalar field to curvature

    The other Higgses, at resonance, in the Lee-Wick extension of the Standard Model

    Get PDF
    Within the framework of the Lee Wick Standard Model (LWSM) we investigate Higgs pair production ggh0h0gg \to h_0 h_0, ggh0p~0gg \to h_0 \tilde p_0 and top pair production ggtˉtgg \to \bar tt at the Large Hadron Collider (LHC), where the neutral particles from the Higgs sector (h0h_0, h~0\tilde h_0 and p~0\tilde p_0) appear as possible resonant intermediate states. We investigate the signal ggh0h0bˉbγγgg \to h_0 h_0 \to \bar b b \gamma \gamma and we find that the LW Higgs, depending on its mass-range, can be seen not long after the LHC upgrade in 2012. More precisely this happens when the new LW Higgs states are below the top pair threshold. In ggtˉtgg \to \bar tt the LW states, due to the wrong-sign propagator and negative width, lead to a dip-peak structure instead of the usual peak-dip structure which gives a characteristic signal especially for low-lying LW Higgs states. We comment on the LWSM and the forward-backward asymmetry in view of the measurement at the TeVatron. Furthermore, we present a technique which reduces the hyperbolic diagonalization to standard diagonalization methods. We clarify issues of spurious phases in the Yukawa sector.Comment: 36 pages, 16 figures, 3 table

    Quark masses and mixings in minimally parameterized UV completions of the Standard Model

    Get PDF
    We explore a simple parameterization of new physics that results in an ultraviolet complete gauge-quark sector of the Standard Model. Specifically, we add an antiscreening contribution to the beta functions of the gauge couplings and a flavor-independent, antiscreening contribution to the beta functions of the Yukawa couplings. These two free parameters give rise to an intricate web of Renormalization Group fixed points. Their predictive power extends to the flavor structure and mixing patterns, which we investigate to demonstrate that some of the free parameters of the Standard Model could be determined by the Renormalization Group flow

    Vorrichtung und Verfahren zur Ansteuerung einer Beschallungsanlage und Beschallungsanlage

    No full text
    WO2006058602 A UPAB: 20060703 NOVELTY - The device has an audio input (19) for receiving at least one audio signal from at least one sound source., a position input (24) for receiving information about a position of the sound source, a wave field synthesis unit (22) for computing loudspeaker signals for the loudspeakers of a wave field synthesis loudspeaker array (10) based on the position of the audio signal, on the audio signal and on a position of the loudspeaker of the wave field synthesis loudspeaker array, a device (20,24a,24b,30) for providing the loudspeaker signal for one or more supply loudspeakers based on the audio signal. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following: (A) a method of controlling a public address system (B) a public address system (C) and a computer program for implementing the inventive method. USE - For controlling a public address system. ADVANTAGE - A pleasant and accurate public address concept is proposed

    A quantification method for heat-decomposable methylglyoxal oligomers and its application on 1,3,5-trimethylbenzene SOA

    Get PDF
    Methylglyoxal forms oligomeric compounds in the atmospheric aqueous particle phase, which could establish a significant contribution to the formation of aqueous secondary organic aerosol (aqSOA). Thus far, no suitable method for the quantification of methylglyoxal oligomers is available despite the great effort spent for structure elucidation. In the present study a simplified method was developed to quantify heat-decomposable methylglyoxal oligomers as a sum parameter. The method is based on the thermal decomposition of oligomers into methylglyoxal monomers. Formed methylglyoxal monomers were detected using PFBHA (o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride) derivatisation and gas chromatography–mass spectrometry (GC/MS) analysis. The method development was focused on the heating time (varied between 15 and 48 h), pH during the heating process (pH  =  1–7), and heating temperature (50, 100 °C). The optimised values of these method parameters are presented. The developed method was applied to quantify heat-decomposable methylglyoxal oligomers formed during the OH-radical oxidation of 1,3,5-trimethylbenzene (TMB) in the Leipzig aerosol chamber (LEipziger AerosolKammer, LEAK). Oligomer formation was investigated as a function of seed particle acidity and relative humidity. A fraction of heat-decomposable methylglyoxal oligomers of up to 8 % in the produced organic particle mass was found, highlighting the importance of those oligomers formed solely by methylglyoxal for SOA formation. Overall, the present study provides a new and suitable method for quantification of heat-decomposable methylglyoxal oligomers in the aqueous particle phase

    A quantification method for heat-decomposable methylglyoxal oligomers and its application on 1,3,5-trimethylbenzene SOA

    Get PDF
    Methylglyoxal forms oligomeric compounds in the atmospheric aqueous particle phase, which could establish a significant contribution to the formation of aqueous secondary organic aerosol (aqSOA). Thus far, no suitable method for the quantification of methylglyoxal oligomers is available despite the great effort spent for structure elucidation. In the present study a simplified method was developed to quantify heat-decomposable methylglyoxal oligomers as a sum parameter. The method is based on the thermal decomposition of oligomers into methylglyoxal monomers. Formed methylglyoxal monomers were detected using PFBHA (o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride) derivatisation and gas chromatography–mass spectrometry (GC/MS) analysis. The method development was focused on the heating time (varied between 15 and 48 h), pH during the heating process (pH  =  1–7), and heating temperature (50, 100 °C). The optimised values of these method parameters are presented. The developed method was applied to quantify heat-decomposable methylglyoxal oligomers formed during the OH-radical oxidation of 1,3,5-trimethylbenzene (TMB) in the Leipzig aerosol chamber (LEipziger AerosolKammer, LEAK). Oligomer formation was investigated as a function of seed particle acidity and relative humidity. A fraction of heat-decomposable methylglyoxal oligomers of up to 8 % in the produced organic particle mass was found, highlighting the importance of those oligomers formed solely by methylglyoxal for SOA formation. Overall, the present study provides a new and suitable method for quantification of heat-decomposable methylglyoxal oligomers in the aqueous particle phase
    corecore