76 research outputs found

    Simulation of the Cosmic Ray Moon Shadow in the Geomagnetic field

    Get PDF
    An accurate MonteCarlo simulation of the deficit of primary cosmic rays in the direction of the Moon has been developed to interpret the observations reported in the TeV energy region until now. Primary particles are propagated trough the geomagnetic field in the Earth-Moon system. The algorithm is described and the contributions of the detector resolution and of the geomagnetic field are disentangled.Comment: 4 pages, 5 figures, Contribution to the 31st ICRC, Lodz, Poland, July 200

    Search for Electron Capture in 176^{176}Lu with LYSO scintillator

    Full text link
    The nuclide 176^{176}Lu is one of the few naturally occurring isotopes that are potentially unstable with respect to electron capture (EC). Although experimental evidence for 176^{176}Lu EC decay is still missing, this isotope is instead well known to β\beta^- decay into 176^{176}Hf with an half-life of about 38 Gyr. The precise investigation of all 176^{176}Lu possible decay modes is interesting because the Lu/Hf ratio is adopted as an isotopic clock. Previous searches for the 176^{176}Lu EC decay were performed by using a passive Lutetium source coupled with an HP-Ge spectrometer. Our approach uses a LYSO crystal both as Lutetium source and as an active detector. Scintillation light from the LYSO crystal is acquired in coincidence with the signals from the HP-Ge detector, this allows a powerful suppression of the background sourcing from the well known β\beta^- decay branch. This coincidence approach led to an improvement on the 176^{176}Lu EC branching ratio limits by a factor 3 to 30, depending on the considered EC channel.Comment: 8 pages, 12 figure

    Towards Advancing the Earthquake Forecasting by Machine Learning of Satellite Data

    Get PDF
    Earthquakes have become one of the leading causes of death from natural hazards in the last fifty years. Continuous efforts have been made to understand the physical characteristics of earthquakes and the interaction between the physical hazards and the environments so that appropriate warnings may be generated before earthquakes strike. However, earthquake forecasting is not trivial at all. Reliable forecastings should include the analysis and the signals indicating the coming of a significant quake. Unfortunately, these signals are rarely evident before earthquakes occur, and therefore it is challenging to detect such precursors in seismic analysis. Among the available technologies for earthquake research, remote sensing has been commonly used due to its unique features such as fast imaging and wide image-acquisition range. Nevertheless, early studies on pre-earthquake and remote-sensing anomalies are mostly oriented towards anomaly identification and analysis of a single physical parameter. Many analyses are based on singular events, which provide a lack of understanding of this complex natural phenomenon because usually, the earthquake signals are hidden in the environmental noise. The universality of such analysis still is not being demonstrated on a worldwide scale. In this paper, we investigate physical and dynamic changes of seismic data and thereby develop a novel machine learning method, namely Inverse Boosting Pruning Trees (IBPT), to issue short-term forecast based on the satellite data of 1371 earthquakes of magnitude six or above due to their impact on the environment. We have analyzed and compared our proposed framework against several states of the art machine learning methods using ten different infrared and hyperspectral measurements collected between 2006 and 2013. Our proposed method outperforms all the six selected baselines and shows a strong capability in improving the likelihood of earthquake forecasting across different earthquake databases

    Gamma-Ray Burst observations by the high-energy charged particle detector on board the CSES-01 satellite between 2019 and 2021

    Full text link
    In this paper we report the detection of five strong Gamma-Ray Bursts (GRBs) by the High-Energy Particle Detector (HEPD-01) mounted on board the China Seismo-Electromagnetic Satellite (CSES-01), operational since 2018 on a Sun-synchronous polar orbit at a \sim 507 km altitude and 97^\circ inclination. HEPD-01 was designed to detect high-energy electrons in the energy range 3 - 100 MeV, protons in the range 30 - 300 MeV, and light nuclei in the range 30 - 300 MeV/n. Nonetheless, Monte Carlo simulations have shown HEPD-01 is sensitive to gamma-ray photons in the energy range 300 keV - 50 MeV, even if with a moderate effective area above \sim 5 MeV. A dedicated time correlation analysis between GRBs reported in literature and signals from a set of HEPD-01 trigger configuration masks has confirmed the anticipated detector sensitivity to high-energy photons. A comparison between the simultaneous time profiles of HEPD-01 electron fluxes and photons from GRB190114C, GRB190305A, GRB190928A, GRB200826B and GRB211211A has shown a remarkable similarity, in spite of the different energy ranges. The high-energy response, with peak sensitivity at about 2 MeV, and moderate effective area of the detector in the actual flight configuration explain why these five GRBs, characterised by a fluence above \sim 3 ×\times 105^{-5} erg cm2^{-2} in the energy interval 300 keV - 50 MeV, have been detected.Comment: Accepted for publication in The Astrophysical Journal (ApJ

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at √s=2.76 TeV with ATLAS