317 research outputs found

    Fusing Loop and GPS Probe Measurements to Estimate Freeway Density

    Full text link
    In an age of ever-increasing penetration of GPS-enabled mobile devices, the potential of real-time "probe" location information for estimating the state of transportation networks is receiving increasing attention. Much work has been done on using probe data to estimate the current speed of vehicle traffic (or equivalently, trip travel time). While travel times are useful to individual drivers, the state variable for a large class of traffic models and control algorithms is vehicle density. Our goal is to use probe data to supplement traditional, fixed-location loop detector data for density estimation. To this end, we derive a method based on Rao-Blackwellized particle filters, a sequential Monte Carlo scheme. We present a simulation where we obtain a 30\% reduction in density mean absolute percentage error from fusing loop and probe data, vs. using loop data alone. We also present results using real data from a 19-mile freeway section in Los Angeles, California, where we obtain a 31\% reduction. In addition, our method's estimate when using only the real-world probe data, and no loop data, outperformed the estimate produced when only loop data were used (an 18\% reduction). These results demonstrate that probe data can be used for traffic density estimation

    A Framework for Robust Assimilation of Potentially Malign Third-Party Data, and its Statistical Meaning

    Full text link
    This paper presents a model-based method for fusing data from multiple sensors with a hypothesis-test-based component for rejecting potentially faulty or otherwise malign data. Our framework is based on an extension of the classic particle filter algorithm for real-time state estimation of uncertain systems with nonlinear dynamics with partial and noisy observations. This extension, based on classical statistical theories, utilizes statistical tests against the system's observation model. We discuss the application of the two major statistical testing frameworks, Fisherian significance testing and Neyman-Pearsonian hypothesis testing, to the Monte Carlo and sensor fusion settings. The Monte Carlo Neyman-Pearson test we develop is useful when one has a reliable model of faulty data, while the Fisher one is applicable when one may not have a model of faults, which may occur when dealing with third-party data, like GNSS data of transportation system users. These statistical tests can be combined with a particle filter to obtain a Monte Carlo state estimation scheme that is robust to faulty or outlier data. We present a synthetic freeway traffic state estimation problem where the filters are able to reject simulated faulty GNSS measurements. The fault-model-free Fisher filter, while underperforming the Neyman-Pearson one when the latter has an accurate fault model, outperforms it when the assumed fault model is incorrect.Comment: IEEE Intelligent Transportation Systems Magazine, special issue on GNSS-based positionin

    Microstates of a Neutral Black Hole in M Theory

    Get PDF
    We consider vacuum solutions in M theory of the form of a five-dimensional Kaluza-Klein black hole cross T^6. In a certain limit, these include the five-dimensional neutral rotating black hole (cross T^6). From a IIA standpoint, these solutions carry D0 and D6 charges. We show that there is a weakly coupled D-brane description which precisely reproduces the Hawking-Bekenstein entropy in the extremal limit, even though supersymmetry is completely broken.Comment: 11 pages. v2: microstate counting extended to generic angular moment
    • …