102 research outputs found

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    Experimental tests of the operating conditions of a micro gas turbine device

    Get PDF
    The aim of this work is to analyze the performance of a commercial micro gas turbine, focusing on the analysis of the fuel consumption and the outlet compressor and turbine temperature at various rpm, and to evaluate and compare the efficiency of the device. A test bench has been assembled with the available equipment in the laboratory of the department of mechanical and aerospace engineering in Roma. By using the software supplied by the manufacturer, the evaluation of the operating performance of the device at different speeds has been performed, obtaining all the values of interest

    Implementing a hybrid series bus with gas turbine device - a preliminary study

    Get PDF
    This paper presents the implementation of an hybrid series Bus with a gas turbine, as thermal engine. The hybridization methodology for transforming city buses, substituting the original gasoline/diesel engine with a micro gas turbine device (intended as range extender), into a series hybrid vehicle has investigated and its feasibility analyzed. The study was conducted by the university of Rome “Sapienza” in collaboration with several enterprises. The idea is to design a hybrid power train that can be installed in a typical city bus, which means that all systems and components will be influenced by the limited space available. In this paper the details of the mechanical and electrical realization of the power train will be discussed. The hybrid system also includes consideration on the battery pack and the vehicle management logic. The proposed solution obtains a reduction in fuel consumption higher than 20%, in comparison with normal commercial fleet

    Design and optimization of fuel injection of a 50 kW micro turbogas

    Get PDF
    The present article deals with the design of a micro turbogas turbine suitable for on board applications, e.g., as a power generator on hybrid transit bus, characterized by a simple constructive approach. Deriving the machine layout from an existing KJ-66 aircraft model engine, the authors propose a theoretical design of a compact, lightweight turbogas turbine, by investigating the technical possibility and limits of the proposed design. In particular, a different combustion chamber layout has been proposed, and fuel adduction channels for different swirler designs have been simulated via ANSYS Fluent in order to identify a satisfactory fuel spreading. As a result, the complete characterization of the design parameters and geometries has been performed, and a series of RANS simulations has been used in order to identify an optimal swirler configuration

    Experimental campaign tests on ultra micro gas turbines, fuel supply comparison and optimization

    Get PDF
    The increasing demand for miniaturized radio-controlled vehicles inspired the following research. The uses of these unmanned miniaturized/micro vehicles range from aero-modeling to drones for urban control and military applications too. The common characteristic of these vehicles is the need for a light and compact propulsion system. The radio-controlled (RC) turbines for modeling are ideally suited for this purpose, guaranteeing the necessary thrust with compactness and lightness. This device is a miniaturized turbojet, and it is generally composed of three basic elements: compressor, combustion chamber and turbine. The main goal of the paper is to evaluate the turbojet performance for considering the possibility of its use as a range extender in a hybrid vehicle. Considering the total volume constraints, it will be important to evaluate the specific fuel consumption. Also from the environmental point of view, the possibility of feeding the device with gas has been considered and, consequently, the needed device modifications performed. The test bench has been realized and assembled at the University Department Laboratory. Several different experimental configurations are reproduced and reported here, to obtain performance maps. The experiments results have been compared to previous tests results, as well as numerical simulations. Therefore, it has been possible to make a comparison between the two different fuels. The results show that this device can be used as a range extender for a hybrid vehicle. Moreover, the various tests have shown that, acting on the control unit, it is possible to feed the device with gas (mixture of propane and butane), obtaining a further benefit from the economic point of view. Surely, an in-depth study of the turbine management logic would produce a further advantage in terms of fuel consumption

    Expander selection for an on board ORC energy recovery system

    Get PDF
    This paper deals with the comparison between volumetric expanders (screw, scroll and rotary vane) and an Inlet Forward Radial (IFR) micro turbine for the exploitation of an on board Organic Rankine Cycle (ORC) energy recovery system. The sensible heat recovered from a common bus engine (typically 8000cc) feeds the energy recovery system that can generate sufficient extra power to sustain the air-conditioning system and part of the auxiliaries. The concept is suitable for all kind of thermally propelled vehicles, but the application considered here is specific for an urban bus. The ORC cycle performance is calculated by a Process Simulator (CAMEL Pro) and the results are discussed. A preliminary design of the considered expanders is proposed using ad-hoc made models implemented in MATLAB; the technical constraints inherent to each machine are listed in order to perform the optimal choice of the expander based on efficiency, reliability and power density. Last step will be the selection of the expander that suites the specific technical and design requests. The final choice relapsed on the screw motor, for it is the best compromise in terms of efficiency, lubrication and reliability

    Ultra Micro Gas Turbines

    Get PDF
    Object of the present work is the detailed study, in every its aspect, of Ultra-Micro-Gas- Turbine Generator, that is a power device with high power density. These generators, although the covered power range oscillates between 100 and 500W, is characterized by very reduced overall dimensions: this introduces complications in the design and, above all, the realization of the mechanical components who represents the greater difficulty to exceed

    A model proposal for the electric energy valorization in a pv power plant equipped with CAES system

    Get PDF
    In this article, an analytical method is evaluated and implemented; to assess the possible electricity sales strate-gies produced by a 3 MW photovoltaic power plant, connected to a 250 kW CAES (Compressed Air Energy Storage) system, with a storage capacity of 750 kWh. The presented model combines a different numbers of parameters and variables, relevant for the system optimization. Several simulations of various system configu-rations have been carried out, to explore and evaluate the economic and technical feasibility of the plant, spe-cifically it has been valued tow case of study: CASE 1 the system is not incentive; CASE 2 the system is incen-tive. In the end of paper it has been rated the Leveled Cost of Energy (LCOE) and specified how the investment could become affordable in the foreseeable future

    Implementing a Hybrid Series Bus with Gas Turbine Device - A Preliminary Study

    Full text link
    This paper presents the implementation of an hybrid series Bus with a gas turbine, as thermal engine. The hybridization methodology for transforming city buses, substituting the original gasoline/diesel engine with a micro gas turbine device (intended as range extender), into a series hybrid vehicle has investigated and its feasibility analyzed. The study was conducted by the university of Rome “Sapienza” in collaboration with several enterprises. The idea is to design a hybrid power train that can be installed in a typical city bus, which means that all systems and components will be influenced by the limited space available. In this paper the details of the mechanical and electrical realization of the power train will be discussed. The hybrid system also includes consideration on the battery pack and the vehicle management logic. The proposed solution obtains a reduction in fuel consumption higher than 20%, in comparison with normal commercial fleet

    Experimental tests on a pre-heated combustion chamber for ultra micro gas turbine device: air/fuel ratio evaluation

    Get PDF
    Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines; the main reason why internal combustion engine is not convenient for micro power generation (5 - 30 kW) is because of their heaviness. Micro and ultra micro gas turbine devices, based on a micro compressor and a micro turbine installed on the same shaft, are more suitable for this scope for several reasons. Micro turbine systems have many advantages over reciprocating engine generators, such as higher power density (with respect to size and weight), extremely low emissions and few, or just one, moving part. Those designed with foil bearings and air-cooling operate without oil, coolants or other hazardous materials. Micro turbines also have the advantage of having the majority of their waste heat contained in their relatively high temperature exhaust. Micro turbines offer several potential advantages compared to other technologies for small-scale power generation, including: a small number of moving parts, compact size, lightweight, greater efficiency, lower emissions, lower electricity costs, and opportunities to utilize waste fuels. The object of this study is the experimental tests on a stand-alone gas turbine device with a pre-heated combustion chamber (CC), to validate the fuel consumption reduction, compared to an actual and commercial device, used on air models
    • …
    corecore