3 research outputs found
Blocking Alcoholic Steatosis in Mice with a Peripherally Restricted Purine Antagonist of the Type 1 Cannabinoid Receptor
Type
1 cannabinoid receptor (CB1) antagonists have demonstrated
promise for the treatment of obesity, liver disease, metabolic syndrome,
and dyslipidemias. However, the inhibition of CB1 receptors in the
central nervous system can produce adverse effects, including depression,
anxiety, and suicidal ideation. Efforts are now underway to produce
peripherally restricted CB1 antagonists to circumvent CNS-associated
undesirable effects. In this study, a series of analogues were explored
in which the 4-aminopiperidine group of compound <b>2</b> was
replaced with aryl- and heteroaryl-substituted piperazine groups both
with and without a spacer. This resulted in mildly basic, potent antagonists
of human CB1 (hCB1). The 2-chlorobenzyl piperazine, <b>25</b>, was found to be potent (<i>K</i><sub>i</sub> = 8 nM);
to be >1000-fold selective for hCB1 over hCB2; to have no hERG liability; and to possess favorable ADME properties including high oral absorption and negligible CNS penetration. Compound <b>25</b> was tested
in a mouse model of alcohol-induced liver steatosis and found to be
efficacious. Taken together, <b>25</b> represents an exciting
lead compound for further clinical development or refinement
Identification of 1‑({[1-(4-Fluorophenyl)-5-(2-methoxyphenyl)‑1<i>H</i>‑pyrazol-3-yl]carbonyl}amino)cyclohexane Carboxylic Acid as a Selective Nonpeptide Neurotensin Receptor Type 2 Compound
Compounds
active at neurotensin receptors (NTS1 and NTS2) exert analgesic effects
on different types of nociceptive modalities, including thermal, mechanical,
and chemical stimuli. The NTS2 preferring peptide JMV-431 (<b>2</b>) and the NTS2 selective nonpeptide compound levocabastine (<b>6</b>) have been shown to be effective in relieving the pain associated
with peripheral neuropathies. With the aim of identifying novel nonpeptide
compounds selective for NTS2, we examined analogues of SR48692 (<b>5a</b>) using a FLIPR calcium assay in CHO cells stably expressing
rat NTS2. This led to the discovery of the NTS2 selective nonpeptide
compound 1-({[1-(4-fluorophenyl)-5-(2-methoxyphenyl)-1<i>H</i>-pyrazol-3-yl]carbonyl}amino)cyclohexane carboxylic acid (NTRC-739, <b>7b</b>) starting from the nonselective compound <b>5a</b>
Identification of 2‑({[1-(4-Fluorophenyl)-5-(2-methoxyphenyl)‑1<i>H</i>‑pyrazol-3-yl]carbonyl}amino)tricyclo[3.3.1.13,7]decane-2-carboxylic Acid (NTRC-844) as a Selective Antagonist for the Rat Neurotensin Receptor Type 2
Neurotensin receptor type 2 (NTS2)
compounds display analgesic
activity in animal pain models. We have identified the first high-affinity
NTS2-selective antagonist (<b>8</b>) that is active in vivo.
This study also revealed that the NTS2 FLIPR assay designation for
a compound, agonist, partial agonist, and so forth, did not correlate
with its in vivo activity as observed in the thermal tail-flick acute
model of pain. This suggests that calcium mobilization is not the
signaling pathway involved in NTS2-mediated analgesia as assessed
by the thermal tail-flick model. Finally, we found a significant bias
between rat and human for compound <b>9</b> in the NTS2 binding
assay