6 research outputs found

    N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid

    Full text link
    [EN] N-Containing graphenes obtained either by simultaneous amination and reduction of graphene oxide or by pyrolysis of chitosan under an inert atmosphere have been found to act as catalysts for the selective wet oxidation of glucose to succinic acid. Selectivity values over 60% at complete glucose conversion have been achieved by performing the reaction at 160 degrees C and 18 atm O-2 pressure for 20 h. This activity has been attributed to graphenic-type N atoms on graphene. The active N-containing graphene catalysts were used four times without observing a decrease in conversion and selectivity of the process. A mechanism having tartaric and fumaric acids as key intermediates is proposed.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, Grapas and CTQ2015-69153-CO2-R1) and Generalitat Valenciana (Prometeo 2013-014) is gratefully acknowledged. Prof. Simona M. Coman kindly acknowledges UEFISCDI for financial support (project PN-II-PT-PCCA-2013-4-1090, Nr. 44/2014). Cristina Bucur acknowledges Core Programme, Project PN-480103/2016.Rizescu, C.; Podolean, I.; Albero-Sancho, J.; Parvulescu, VI.; Coman, SM.; Bucur, C.; Puche Panadero, M.... (2017). N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chemistry. 19(8):1999-2005. https://doi.org/10.1039/C7GC00473GS19992005198Alonso, D. M., Wettstein, S. G., & Dumesic, J. A. (2012). Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews, 41(24), 8075. doi:10.1039/c2cs35188aCherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412-1421. doi:10.1016/j.enconman.2010.01.015Christensen, C. H., Rass-Hansen, J., Marsden, C. C., Taarning, E., & Egeblad, K. (2008). The Renewable Chemicals Industry. ChemSusChem, 1(4), 283-289. doi:10.1002/cssc.200700168Lange, J.-P. (2007). Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels, Bioproducts and Biorefining, 1(1), 39-48. doi:10.1002/bbb.7Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989dCliment, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639dBjerre, A. B., Olesen, A. B., Fernqvist, T., Plöger, A., & Schmidt, A. S. (2000). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering, 49(5), 568-577. doi:10.1002/(sici)1097-0290(19960305)49:53.0.co;2-6Klinke, H. B., Ahring, B. K., Schmidt, A. S., & Thomsen, A. B. (2002). Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology, 82(1), 15-26. doi:10.1016/s0960-8524(01)00152-3Schmidt, A. S., & Thomsen, A. B. (1998). Optimization of wet oxidation pretreatment of wheat straw. Bioresource Technology, 64(2), 139-151. doi:10.1016/s0960-8524(97)00164-8Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3-4), 501-551. doi:10.1016/s1093-0191(03)00032-7Mishra, V. S., Mahajani, V. V., & Joshi, J. B. (1995). Wet Air Oxidation. Industrial & Engineering Chemistry Research, 34(1), 2-48. doi:10.1021/ie00040a001Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L., & Weckhuysen, B. M. (2010). The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chemical Reviews, 110(6), 3552-3599. doi:10.1021/cr900354uPodolean, I., Rizescu, C., Bala, C., Rotariu, L., Parvulescu, V. I., Coman, S. M., & Garcia, H. (2016). Unprecedented Catalytic Wet Oxidation of Glucose to Succinic Acid Induced by the Addition ofn-Butylamine to a RuIIICatalyst. ChemSusChem, 9(17), 2307-2311. doi:10.1002/cssc.201600474Huang, C., Li, C., & Shi, G. (2012). Graphene based catalysts. Energy & Environmental Science, 5(10), 8848. doi:10.1039/c2ee22238hNavalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347Su, D. S., Perathoner, S., & Centi, G. (2013). Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 113(8), 5782-5816. doi:10.1021/cr300367dDhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653Huang, H., Huang, J., Liu, Y.-M., He, H.-Y., Cao, Y., & Fan, K.-N. (2012). Graphite oxide as an efficient and durable metal-free catalyst for aerobic oxidative coupling of amines to imines. Green Chemistry, 14(4), 930. doi:10.1039/c2gc16681jLi, X.-H., Chen, J.-S., Wang, X., Sun, J., & Antonietti, M. (2011). Metal-Free Activation of Dioxygen by Graphene/g-C3N4Nanocomposites: Functional Dyads for Selective Oxidation of Saturated Hydrocarbons. Journal of the American Chemical Society, 133(21), 8074-8077. doi:10.1021/ja200997aSun, H., Wang, Y., Liu, S., Ge, L., Wang, L., Zhu, Z., & Wang, S. (2013). Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation. Chemical Communications, 49(85), 9914. doi:10.1039/c3cc43401jYang, J.-H., Sun, G., Gao, Y., Zhao, H., Tang, P., Tan, J., … Ma, D. (2013). Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst. Energy & Environmental Science, 6(3), 793. doi:10.1039/c3ee23623dRocha, R. P., Gonçalves, A. G., Pastrana-Martínez, L. M., Bordoni, B. C., Soares, O. S. G. P., Órfão, J. J. M., … Pereira, M. F. R. (2015). Nitrogen-doped graphene-based materials for advanced oxidation processes. Catalysis Today, 249, 192-198. doi:10.1016/j.cattod.2014.10.046Wang, Y., Xie, Y., Sun, H., Xiao, J., Cao, H., & Wang, S. (2016). Efficient Catalytic Ozonation over Reduced Graphene Oxide for p-Hydroxylbenzoic Acid (PHBA) Destruction: Active Site and Mechanism. ACS Applied Materials & Interfaces, 8(15), 9710-9720. doi:10.1021/acsami.6b01175Duan, X., Su, C., Zhou, L., Sun, H., Suvorova, A., Odedairo, T., … Wang, S. (2016). Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Applied Catalysis B: Environmental, 194, 7-15. doi:10.1016/j.apcatb.2016.04.043Kang, J., Duan, X., Zhou, L., Sun, H., Tadé, M. O., & Wang, S. (2016). Carbocatalytic activation of persulfate for removal of antibiotics in water solutions. Chemical Engineering Journal, 288, 399-405. doi:10.1016/j.cej.2015.12.040Sun, H., Kwan, C., Suvorova, A., Ang, H. M., Tadé, M. O., & Wang, S. (2014). Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals. Applied Catalysis B: Environmental, 154-155, 134-141. doi:10.1016/j.apcatb.2014.02.012Wang, X., Qin, Y., Zhu, L., & Tang, H. (2015). Nitrogen-Doped Reduced Graphene Oxide as a Bifunctional Material for Removing Bisphenols: Synergistic Effect between Adsorption and Catalysis. Environmental Science & Technology, 49(11), 6855-6864. doi:10.1021/acs.est.5b01059Lai, L., Potts, J. R., Zhan, D., Wang, L., Poh, C. K., Tang, C., … Ruoff, R. S. (2012). Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 5(7), 7936. doi:10.1039/c2ee21802jLi, X., Wang, H., Robinson, J. T., Sanchez, H., Diankov, G., & Dai, H. (2009). Simultaneous Nitrogen Doping and Reduction of Graphene Oxide. Journal of the American Chemical Society, 131(43), 15939-15944. doi:10.1021/ja907098fLong, D., Li, W., Ling, L., Miyawaki, J., Mochida, I., & Yoon, S.-H. (2010). Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide. Langmuir, 26(20), 16096-16102. doi:10.1021/la102425aLavorato, C., Primo, A., Molinari, R., & Garcia, H. (2013). N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 20(1), 187-194. doi:10.1002/chem.201303689Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978gPrimo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068Chan, L. H., Hong, K. H., Xiao, D. Q., Lin, T. C., Lai, S. H., Hsieh, W. J., & Shih, H. C. (2004). Resolution of the binding configuration in nitrogen-doped carbon nanotubes. Physical Review B, 70(12). doi:10.1103/physrevb.70.125408Guo, B., Liu, Q., Chen, E., Zhu, H., Fang, L., & Gong, J. R. (2010). Controllable N-Doping of Graphene. Nano Letters, 10(12), 4975-4980. doi:10.1021/nl103079jSun, L., Wang, L., Tian, C., Tan, T., Xie, Y., Shi, K., … Fu, H. (2012). Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances, 2(10), 4498. doi:10.1039/c2ra01367cAsedegbega-Nieto, E., Perez-Cadenas, M., Morales, M. V., Bachiller-Baeza, B., Gallegos-Suarez, E., Rodriguez-Ramos, I., & Guerrero-Ruiz, A. (2014). High nitrogen doped graphenes and their applicability as basic catalysts. Diamond and Related Materials, 44, 26-32. doi:10.1016/j.diamond.2014.01.019Jiang, H., Yu, X., Nie, R., Lu, X., Zhou, D., & Xia, Q. (2016). Selective hydrogenation of aromatic carboxylic acids over basic N-doped mesoporous carbon supported palladium catalysts. Applied Catalysis A: General, 520, 73-81. doi:10.1016/j.apcata.2016.04.009Primo, A., Parvulescu, V., & Garcia, H. (2016). Graphenes as Metal-Free Catalysts with Engineered Active Sites. The Journal of Physical Chemistry Letters, 8(1), 264-278. doi:10.1021/acs.jpclett.6b0199

    Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions

    Full text link
    [EN] H2 plasma has been used to generate carbon vacancies on reduced graphene oxide to increase its catalytic activity as a hydrogenation catalyst. A relationship between the power of the plasma treatment and the exposure time with the activity of the material was observed for CvC double bond hydrogenation. The activity data in the case of 1-octene, showing skeletal isomerization besides hydrogenation, indicate that H2 plasma treatment can introduce hydrogenating and acid sites rendering a bifunctional catalyst that is reminiscent of the activity of noble metals supported on acid supports.Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, CTQ2015-69563-CO2-R1 and Grapas) is gratefully acknowledged. AP thanks the Ministry for a Ramon y Cajal research associate contract. AFG thanks the Center of Supercomputing of Galicia (CESGA) for the computational facilities. MM acknowledges financial support from the PN 16 47 01 04 project. VIP kindly acknowledges UEFISCDI for financial support (project PN-III-P4-ID-PCE-2016-0146, No. 121/2017).Primo Arnau, AM.; Franconetti, A.; Magureanu, M.; Mandache, NB.; Bucur, C.; Rizescu, C.; Cojocaru, B.... (2018). Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chemistry. 20(11):2611-2623. https://doi.org/10.1039/c7gc03397dS261126232011Grondal, C., Jeanty, M., & Enders, D. (2010). Organocatalytic cascade reactions as a new tool in total synthesis. Nature Chemistry, 2(3), 167-178. doi:10.1038/nchem.539Stephan, D. W., & Erker, G. (2009). Frustrated Lewis Pairs: Metal-free Hydrogen Activation and More. Angewandte Chemie International Edition, 49(1), 46-76. doi:10.1002/anie.200903708Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J.-O., Schlögl, R., & Carlsson, J. M. (2008). Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 18(41), 4893. doi:10.1039/b800274fWang, Y., Wang, X., & Antonietti, M. (2011). Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie International Edition, 51(1), 68-89. doi:10.1002/anie.201101182Dai, L., Xue, Y., Qu, L., Choi, H.-J., & Baek, J.-B. (2015). Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 115(11), 4823-4892. doi:10.1021/cr5003563Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Antonietti, M., & García, H. (2017). Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 46(15), 4501-4529. doi:10.1039/c7cs00156hNavalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347Zhang, J., Qu, L., Shi, G., Liu, J., Chen, J., & Dai, L. (2015). N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angewandte Chemie International Edition, 55(6), 2230-2234. doi:10.1002/anie.201510495Kong, X., Sun, Z., Chen, M., Chen, C., & Chen, Q. (2013). Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy & Environmental Science, 6(11), 3260. doi:10.1039/c3ee40918jHu, H., Xin, J. H., Hu, H., & Wang, X. (2015). Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Research, 8(12), 3992-4006. doi:10.1007/s12274-015-0902-zTrandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197Primo, A., Neatu, F., Florea, M., Parvulescu, V., & Garcia, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 5(1). doi:10.1038/ncomms6291Primo, A., Parvulescu, V., & Garcia, H. (2016). Graphenes as Metal-Free Catalysts with Engineered Active Sites. The Journal of Physical Chemistry Letters, 8(1), 264-278. doi:10.1021/acs.jpclett.6b01996Son, S., Holroyd, C., Clough, J., Horn, A., Koehler, S. P. K., & Casiraghi, C. (2016). Substrate dependence of graphene reactivity towards hydrogenation. Applied Physics Letters, 109(24), 243103. doi:10.1063/1.4971385Tang, C., & Zhang, Q. (2017). Nanocarbon for Oxygen Reduction Electrocatalysis: Dopants, Edges, and Defects. Advanced Materials, 29(13), 1604103. doi:10.1002/adma.201604103Tang, C., Wang, H.-F., Chen, X., Li, B.-Q., Hou, T.-Z., Zhang, B., … Wei, F. (2016). Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis. Advanced Materials, 28(32), 6845-6851. doi:10.1002/adma.201601406Jia, Y., Zhang, L., Du, A., Gao, G., Chen, J., Yan, X., … Yao, X. (2016). Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Advanced Materials, 28(43), 9532-9538. doi:10.1002/adma.201602912Tao, L., Wang, Q., Dou, S., Ma, Z., Huo, J., Wang, S., & Dai, L. (2016). Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chemical Communications, 52(13), 2764-2767. doi:10.1039/c5cc09173jHarpale, A., & Chew, H. B. (2017). Hydrogen-plasma patterning of multilayer graphene: Mechanisms and modeling. Carbon, 117, 82-91. doi:10.1016/j.carbon.2017.02.062Harpale, A., Panesi, M., & Chew, H. B. (2016). Plasma-graphene interaction and its effects on nanoscale patterning. Physical Review B, 93(3). doi:10.1103/physrevb.93.035416Felten, A., McManus, D., Rice, C., Nittler, L., Pireaux, J.-J., & Casiraghi, C. (2014). Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry. Applied Physics Letters, 105(18), 183104. doi:10.1063/1.4901226Davydova, A., Despiau-Pujo, E., Cunge, G., & Graves, D. B. (2015). Etching mechanisms of graphene nanoribbons in downstream H2plasmas: insights from molecular dynamics simulations. Journal of Physics D: Applied Physics, 48(19), 195202. doi:10.1088/0022-3727/48/19/195202Davydova, A., Despiau-Pujo, E., Cunge, G., & Graves, D. B. (2017). H+ ion-induced damage and etching of multilayer graphene in H2 plasmas. Journal of Applied Physics, 121(13), 133301. doi:10.1063/1.4979023Delfour, L., Davydova, A., Despiau-Pujo, E., Cunge, G., Graves, D. B., & Magaud, L. (2016). Cleaning graphene: A first quantum/classical molecular dynamics approach. Journal of Applied Physics, 119(12), 125309. doi:10.1063/1.4945034Despiau-Pujo, E., Davydova, A., Cunge, G., Delfour, L., Magaud, L., & Graves, D. B. (2013). Elementary processes of H2 plasma-graphene interaction: A combined molecular dynamics and density functional theory study. Journal of Applied Physics, 113(11), 114302. doi:10.1063/1.4794375Despiau-Pujo, E., Davydova, A., Cunge, G., & Graves, D. B. (2015). Hydrogen Plasmas Processing of Graphene Surfaces. Plasma Chemistry and Plasma Processing, 36(1), 213-229. doi:10.1007/s11090-015-9683-0Nieman, R., Das, A., Aquino, A. J. A., Amorim, R. G., Machado, F. B. C., & Lischka, H. (2017). Single and double carbon vacancies in pyrene as first models for graphene defects: A survey of the chemical reactivity toward hydrogen. Chemical Physics, 482, 346-354. doi:10.1016/j.chemphys.2016.08.007Sastre, G., Forneli, A., Almasan, V., Parvulescu, V. I., & Garcia, H. (2017). Isotopic H/D exchange on graphenes. A combined experimental and theoretical study. Applied Catalysis A: General, 547, 52-59. doi:10.1016/j.apcata.2017.08.018Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017Skowron, S. T., Lebedeva, I. V., Popov, A. M., & Bichoutskaia, E. (2015). Energetics of atomic scale structure changes in graphene. Chemical Society Reviews, 44(10), 3143-3176. doi:10.1039/c4cs00499jDubin, S., Gilje, S., Wang, K., Tung, V. C., Cha, K., Hall, A. S., … Kaner, R. B. (2010). A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents. ACS Nano, 4(7), 3845-3852. doi:10.1021/nn100511aLucchese, M. M., Stavale, F., Ferreira, E. H. M., Vilani, C., Moutinho, M. V. O., Capaz, R. B., … Jorio, A. (2010). Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 48(5), 1592-1597. doi:10.1016/j.carbon.2009.12.057Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034Su, C., Acik, M., Takai, K., Lu, J., Hao, S., Zheng, Y., … Ping Loh, K. (2012). Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Communications, 3(1). doi:10.1038/ncomms2315Gholami, J., Manteghian, M., Badiei, A., Ueda, H., & Javanbakht, M. (2015). N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching. Luminescence, 31(1), 229-235. doi:10.1002/bio.2950Zhang, C., Dabbs, D. M., Liu, L.-M., Aksay, I. A., Car, R., & Selloni, A. (2015). Combined Effects of Functional Groups, Lattice Defects, and Edges in the Infrared Spectra of Graphene Oxide. The Journal of Physical Chemistry C, 119(32), 18167-18176. doi:10.1021/acs.jpcc.5b02727Chu, H. Y., Rosynek, M. P., & Lunsford, J. H. (1998). Skeletal Isomerization of Hexane over Pt/H-Beta Zeolites: Is the Classical Mechanism Correct? Journal of Catalysis, 178(1), 352-362. doi:10.1006/jcat.1998.2136EBITANI, K. (1991). Skeletal isomerization of hydrocarbons over zirconium oxide promoted by Platinum and Sulfate Ion. Journal of Catalysis, 130(1), 257-267. doi:10.1016/0021-9517(91)90108-gSazama, P., Pastvova, J., Rizescu, C., Tirsoaga, A., Parvulescu, V. I., Garcia, H., … Blechta, V. (2018). Catalytic Properties of 3D Graphene-Like Microporous Carbons Synthesized in a Zeolite Template. ACS Catalysis, 8(3), 1779-1789. doi:10.1021/acscatal.7b04086Oubal, M., Picaud, S., Rayez, M.-T., & Rayez, J.-C. (2012). Structure and reactivity of carbon multivacancies in graphene. Computational and Theoretical Chemistry, 990, 159-166. doi:10.1016/j.comptc.2012.01.008Gürel, H. H., Özçelik, V. O., & Ciraci, S. (2014). Dissociative Adsorption of Molecules on Graphene and Silicene. The Journal of Physical Chemistry C, 118(47), 27574-27582. doi:10.1021/jp509260cChase, P. A., & Stephan, D. W. (2008). Hydrogen and Amine Activation by a Frustrated Lewis Pair of a Bulky N-Heterocyclic Carbene and B(C6F5)3. Angewandte Chemie International Edition, 47(39), 7433-7437. doi:10.1002/anie.200802596Cheng, G.-J., Zhang, X., Chung, L. W., Xu, L., & Wu, Y.-D. (2015). Computational Organic Chemistry: Bridging Theory and Experiment in Establishing the Mechanisms of Chemical Reactions. Journal of the American Chemical Society, 137(5), 1706-1725. doi:10.1021/ja5112749Coman, S. M., Podolean, I., Tudorache, M., Cojocaru, B., Parvulescu, V. I., Puche, M., & Garcia, H. (2017). Graphene oxide as a catalyst for the diastereoselective transfer hydrogenation in the synthesis of prostaglandin derivatives. Chemical Communications, 53(74), 10271-10274. doi:10.1039/c7cc05105

    Catalytic Properties of 3D Graphene-Like Microporous Carbons Synthesized in a Zeolite Template

    Full text link
    [EN] The inherent properties of a single atomic carbon layer in graphene offer opportunities for the creation of catalytically active centers tailored on a molecular level on a support with high thermal stability and very high specific surface area. We demonstrate that organization of the two-dimensional system of the carbon layer into three-dimensional (3D) graphene-like catalytic materials with the connectivity of a pore network providing good accessibility to the active centers allows the preparation of catalytic materials that exploit the properties of graphene. In this study, 3D graphene-like microporous carbons, denoted as)6 beta-carbon and Y-carbon, were synthesized by nanocasting of beta (*BEA) and faujasite (FAU) zeolite templates. Structural analyses show that the materials are characterized by 3D-assembled and highly stable single-atom graphene an open porous system resembling the regular channel system of the zeolites with a specific surface area comparable to the surface area of graphene. The materials effectively catalyze the hydrogenation of alkenes, alkynes, and cycloalkenes into the corresponding alkanes and cycloalkanes. The materials facilitate catalytic intramolecular rearrangements, including the selective isomerization of double bonds and branching of linear chains, as well as stereoselective isomerization of unsaturated hydrocarbons. layers that formThis work was supported by the Grant Agency of the Czech Republic under project No. 15-12113S. The authors acknowledge the assistance provided by the Research Infrastructures NanoEnviCz (Project No. LM2015073) and Pro-NanoEnviCz (Project No. CZ.02.1.01/0.0/0.0/16_013/0001821), supported by the Ministry of Education, Youth and Sports of the Czech Republic.Sazama, P.; Pastvova, J.; Rizescu, C.; Tirsoaga, A.; Parvulescu, VI.; GarcĂ­a GĂłmez, H.; Kobera, L.... (2018). Catalytic Properties of 3D Graphene-Like Microporous Carbons Synthesized in a Zeolite Template. ACS Catalysis. 8(3):1779-1789. https://doi.org/10.1021/acscatal.7b04086S177917898

    Engineering hydrogenation active sites on graphene oxide and N-doped graphene by plasma treatment

    Full text link
    [EN] Graphene oxide (GO) and N-doped graphene [(N)G] graphenes were submitted to H-2 glow discharge under different discharge regimes, in both the negative glow and positive column plasma regions. The resulted catalysts were fully characterized using several techniques such as Raman, DRIFT and XPS spectroscopy, powder X-ray diffraction, H-2 pulse chemisorption and H-2-, CO2- and NH3-TPD experiments. Density functional theory calculations were performed taking a slab model of graphene sheet with an optimized C-C bond length (1.426 angstrom) and a 16 angstrom vacuum layer between sheets. An overview of these characterizations showed that the O/C atomic ratio of GO is influenced by the plasma regime, indicating the occurrence of O removal, as also predicted by DFT calculations. In the case of (N)G, the plasma treatment also removes pyridinic N with an increase of the C/N ratio. The efficiency of the plasma modification has been checked through catalytic tests in hydroisomerization of 1-octene and hydrogenation of alpha-methyl-styrene. Contrarily to classical thermal activation requiring high temperatures, the generation of the defects by treating with plasma occurs at voltages in the range of 2 5 kV. In consequence, the hydrogenation and isomerization of alkenes resulted with high yields and good selectivities. Graphene prepared from sodium alginate from brown algae was considered as reference in these investigations.This work was supported by the Romanian Ministry of Education and Research UEFISCDI (projects PN-III-P4-ID-PCE-2016-0146, nr. 121/2017, PN-III-P1-1.1-TE-2016-2191, nr. 89/2018 and 16N/2019) and by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-89237-CO2-R1). MM thanks Dr. F. Gherendi for the calibration of the OES system.Magureanu, M.; Mandache, NB.; Rizescu, C.; Bucur, C.; Cojocaru, B.; Man, IC.; Primo Arnau, AM.... (2021). Engineering hydrogenation active sites on graphene oxide and N-doped graphene by plasma treatment. Applied Catalysis B Environmental. 287:1-11. https://doi.org/10.1016/j.apcatb.2021.119962S11128

    Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions

    Full text link
    [EN] Films of few-layers defective N-doped or undoped graphene (10-15 nm) containing antimony oxide nanoparticles (15-30 nm) have been prepared on quartz by pyrolysis of alginate or chitosan adsorbing Sb(OAc)(3). XPS shows that the prevalent Sb oxidation state is +III, while thermoprogrammed CO2 desorption shows that these films exhibit basic sites. These thin films have used as basic catalysts to promote the Michael addition of active methylene compounds and the Henry condensation. These results have been rationalized by DFT calculations that have shown that undercoordinated or two-fold coordinated oxygen atoms on SbOx clusters can act as basic sites, providing a wide range of basic strength. (c) 2020 Elsevier Inc. All rights reserved.This work was supported by UEFISCDI (PN-III-P4-ID-PCE-2016-0146, nr. 121/2017 and project number PN-III-P1-1.1-TE-2016-2191, nr. 89/2018) and by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-890237-CO2-1).Simion, A.; Candu, N.; Cojocaru, B.; Coman, SM.; Bucur, C.; Forneli Rubio, MA.; Primo Arnau, AM.... (2020). Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions. Journal of Catalysis. 390:135-149. https://doi.org/10.1016/j.jcat.2020.07.033S135149390Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 312, 99-148. doi:10.1016/j.ccr.2015.12.005Blanita, G., & Lazar, M. D. (2013). Review of Graphene-Supported Metal Nanoparticles as New and Efficient Heterogeneous Catalysts. Micro and Nanosystems, 5(2), 138-146. doi:10.2174/1876402911305020009Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22(35), 3906-3924. doi:10.1002/adma.201001068Huang, C., Li, C., & Shi, G. (2012). Graphene based catalysts. Energy & Environmental Science, 5(10), 8848. doi:10.1039/c2ee22238hJoshi, R. K., Alwarappan, S., Yoshimura, M., Sahajwalla, V., & Nishina, Y. (2015). Graphene oxide: the new membrane material. Applied Materials Today, 1(1), 1-12. doi:10.1016/j.apmt.2015.06.002Miculescu, M., Thakur, V. K., Miculescu, F., & Voicu, S. I. (2016). Graphene-based polymer nanocomposite membranes: a review. Polymers for Advanced Technologies, 27(7), 844-859. doi:10.1002/pat.3751Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068Hao, P., Zhao, Z., Leng, Y., Tian, J., Sang, Y., Boughton, R. I., … Yang, B. (2015). Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy, 15, 9-23. doi:10.1016/j.nanoen.2015.02.035Rizescu, C., Podolean, I., Albero, J., Parvulescu, V. I., Coman, S. M., Bucur, C., … Garcia, H. (2017). N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chemistry, 19(8), 1999-2005. doi:10.1039/c7gc00473gDhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908Zhang, S., Yan, Z., Li, Y., Chen, Z., & Zeng, H. (2015). Atomically Thin Arsenene and Antimonene: Semimetal-Semiconductor and Indirect-Direct Band-Gap Transitions. Angewandte Chemie International Edition, 54(10), 3112-3115. doi:10.1002/anie.201411246Ji, J., Song, X., Liu, J., Yan, Z., Huo, C., Zhang, S., … Zeng, H. (2016). Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nature Communications, 7(1). doi:10.1038/ncomms13352Gibaja, C., Rodriguez-San-Miguel, D., Ares, P., Gómez-Herrero, J., Varela, M., Gillen, R., … Zamora, F. (2016). Few-Layer Antimonene by Liquid-Phase Exfoliation. Angewandte Chemie International Edition, 55(46), 14345-14349. doi:10.1002/anie.201605298Pumera, M., & Sofer, Z. (2017). 2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus. Advanced Materials, 29(21), 1605299. doi:10.1002/adma.201605299Li, Q., Liu, M., Zhang, Y., & Liu, Z. (2015). Hexagonal Boron Nitride-Graphene Heterostructures: Synthesis and Interfacial Properties. Small, 12(1), 32-50. doi:10.1002/smll.201501766Tang, S., Wang, H., Zhang, Y., Li, A., Xie, H., Liu, X., … Jiang, M. (2013). Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Scientific Reports, 3(1). doi:10.1038/srep02666Rendón-Patiño, A., Doménech, A., García, H., & Primo, A. (2019). A reliable procedure for the preparation of graphene-boron nitride superlattices as large area (cm × cm) films on arbitrary substrates or powders (gram scale) and unexpected electrocatalytic properties. Nanoscale, 11(6), 2981-2990. doi:10.1039/c8nr08377kElliott, B. ., Mackay, J. ., Clay, P., & Ashby, J. (1998). An assessment of the genetic toxicology of antimony trioxide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 415(1-2), 109-117. doi:10.1016/s1383-5718(98)00065-5McCallum, R. I. (2005). Occupational exposure to antimony compounds. Journal of Environmental Monitoring, 7(12), 1245. doi:10.1039/b509118gGe, Y. Z., Han, C. H., & Zhang, D. (2011). Study of PET Depolymerization Catalyzed by Metal Oxide with Different Acidity/Basicity under Microwave Irradiation. Advanced Materials Research, 233-235, 1076-1079. doi:10.4028/www.scientific.net/amr.233-235.1076Gopiraman, M., Deng, D., Ganesh Babu, S., Hayashi, T., Karvembu, R., & Kim, I. S. (2015). Sustainable and Versatile CuO/GNS Nanocatalyst for Highly Efficient Base Free Coupling Reactions. ACS Sustainable Chemistry & Engineering, 3(10), 2478-2488. doi:10.1021/acssuschemeng.5b00542Cirujano, F. G., López-Maya, E., Rodríguez-Albelo, M., Barea, E., Navarro, J. A. R., & De Vos, D. E. (2017). Selective One-Pot Two-Step C−C Bond Formation using Metal-Organic Frameworks with Mild Basicity as Heterogeneous Catalysts. ChemCatChem, 9(21), 4019-4023. doi:10.1002/cctc.201700784Miguélez, J., Miyamura, H., & Kobayashi, S. (2017). A Polystyrene‐Supported Phase‐Transfer Catalyst for Asymmetric Michael Addition of Glycine‐Derived Imines to α,β‐Unsaturated Ketones. Advanced Synthesis & Catalysis, 359(17), 2897-2900. doi:10.1002/adsc.201700155Szőllősi, G., & Kozma, V. (2018). Design of Heterogeneous Organocatalyst for the Asymmetric Michael Addition of Aldehydes to Maleimides. ChemCatChem, 10(19), 4362-4368. doi:10.1002/cctc.201800919Szőllősi, G., Gombkötő, D., Mogyorós, A. Z., & Fülöp, F. (2018). Surface-Improved Asymmetric Michael Addition Catalyzed by Amino Acids Adsorbed on Laponite. Advanced Synthesis & Catalysis, 360(10), 1992-2004. doi:10.1002/adsc.201701627Zhang, J., Han, X., Wu, X., Liu, Y., & Cui, Y. (2019). Chiral DHIP- and Pyrrolidine-Based Covalent Organic Frameworks for Asymmetric Catalysis. ACS Sustainable Chemistry & Engineering, 7(5), 5065-5071. doi:10.1021/acssuschemeng.8b05887Xie, G., Zhang, J., & Ma, X. (2019). Compartmentalization of Multiple Catalysts into Outer and Inner Shells of Hollow Mesoporous Nanospheres for Heterogeneous Multi-Catalyzed/Multi-Component Asymmetric Organocascade. ACS Catalysis, 9(10), 9081-9086. doi:10.1021/acscatal.9b01608Tahir, N., Wang, G., Onyshchenko, I., De Geyter, N., Leus, K., Morent, R., & Van Der Voort, P. (2019). High-nitrogen containing covalent triazine frameworks as basic catalytic support for the Cu-catalyzed Henry reaction. Journal of Catalysis, 375, 242-248. doi:10.1016/j.jcat.2019.06.001Paul, A., Martins, L. M. D. R. S., Karmakar, A., Kuznetsov, M. L., Novikov, A. S., Guedes da Silva, M. F. C., & Pombeiro, A. J. L. (2020). Environmentally benign benzyl alcohol oxidation and C-C coupling catalysed by amide functionalized 3D Co(II) and Zn(II) metal organic frameworks. Journal of Catalysis, 385, 324-337. doi:10.1016/j.jcat.2020.03.035Zhou, T.-Y., Auer, B., Lee, S. J., & Telfer, S. G. (2019). Catalysts Confined in Programmed Framework Pores Enable New Transformations and Tune Reaction Efficiency and Selectivity. Journal of the American Chemical Society, 141(4), 1577-1582. doi:10.1021/jacs.8b11221Kannappan, L., & Rajmohan, R. (2020). Synthesis of structurally enhanced magnetite cored poly(propyleneimine) dendrimer nanohybrid material and evaluation of its functionality in sustainable catalysis of condensation reactions. Reactive and Functional Polymers, 152, 104579. doi:10.1016/j.reactfunctpolym.2020.104579Zabeti, M., Wan Daud, W. M. A., & Aroua, M. K. (2009). Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology, 90(6), 770-777. doi:10.1016/j.fuproc.2009.03.010Okuhara, T. (2002). Water-Tolerant Solid Acid Catalysts. Chemical Reviews, 102(10), 3641-3666. doi:10.1021/cr0103569Kiss, A. A., Dimian, A. C., & Rothenberg, G. (2006). Solid Acid Catalysts for Biodiesel Production –-Towards Sustainable Energy. Advanced Synthesis & Catalysis, 348(1-2), 75-81. doi:10.1002/adsc.200505160SONG, X., & SAYARI, A. (1996). Sulfated Zirconia-Based Strong Solid-Acid Catalysts: Recent Progress. Catalysis Reviews, 38(3), 329-412. doi:10.1080/01614949608006462Corma, A. (1997). Solid acid catalysts. Current Opinion in Solid State and Materials Science, 2(1), 63-75. doi:10.1016/s1359-0286(97)80107-6Johnson, O. (1955). Acidity and Polymerization Activity of Solid Acid Catalysts. The Journal of Physical Chemistry, 59(9), 827-831. doi:10.1021/j150531a007Weitkamp, J. (2000). Zeolites and catalysis. Solid State Ionics, 131(1-2), 175-188. doi:10.1016/s0167-2738(00)00632-9Tanabe, K. (1999). Industrial application of solid acid–base catalysts. Applied Catalysis A: General, 181(2), 399-434. doi:10.1016/s0926-860x(98)00397-4Hattori, H. (2001). Solid base catalysts: generation of basic sites and application to organic synthesis. Applied Catalysis A: General, 222(1-2), 247-259. doi:10.1016/s0926-860x(01)00839-0Ono, Y. (1997). Selective reactions over solid base catalysts. Catalysis Today, 38(3), 321-337. doi:10.1016/s0920-5861(97)81502-5Saugar, A. I., Márquez-Álvarez, C., Villar-Garcia, I. J., Welton, T., & Pérez-Pariente, J. (2016). Basicity and catalytic activity of porous materials based on a (Si,Al)-N framework. Applied Catalysis A: General, 520, 157-169. doi:10.1016/j.apcata.2016.04.012Ma, W., Zhang, X., Fan, J., Liu, Y., Tang, W., Xue, D., … Wang, C. (2019). Iron-Catalyzed Anti-Markovnikov Hydroamination and Hydroamidation of Allylic Alcohols. Journal of the American Chemical Society, 141(34), 13506-13515. doi:10.1021/jacs.9b05221Yang, S., Peng, L., Sun, D. T., Asgari, M., Oveisi, E., Trukhina, O., … Queen, W. L. (2019). A new post-synthetic polymerization strategy makes metal–organic frameworks more stable. Chemical Science, 10(17), 4542-4549. doi:10.1039/c9sc00135bDas, S., Goswami, A., Murali, N., & Asefa, T. (2013). Efficient Tertiary Amine/Weak Acid Bifunctional Mesoporous Silica Catalysts for Michael Addition Reactions. ChemCatChem, 5(4), 910-919. doi:10.1002/cctc.201200551Hammer, B., Hansen, L. B., & Nørskov, J. K. (1999). Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 59(11), 7413-7421. doi:10.1103/physrevb.59.7413Latorre-Sánchez, M., Primo, A., Atienzar, P., Forneli, A., & García, H. (2014). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 11(8), 970-975. doi:10.1002/smll.201402278Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978gDhakshinamoorthy, A., Esteve Adell, I., Primo, A., & Garcia, H. (2017). Enhanced Activity of Ag Nanoplatelets on Few Layers of Graphene Film with Preferential Orientation for Dehydrogenative Silane–Alcohol Coupling. ACS Sustainable Chemistry & Engineering, 5(3), 2400-2406. doi:10.1021/acssuschemeng.6b02729Mateo, D., Esteve-Adell, I., Albero, J., Primo, A., & García, H. (2017). Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 201, 582-590. doi:10.1016/j.apcatb.2016.08.033Simion, A., Candu, N., Coman, S. M., Primo, A., Esteve-Adell, I., Michelet, V., … Garcia, H. (2018). Bimetallic Oriented (Au /Cu2 O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2 O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry, 2018(44), 6185-6190. doi:10.1002/ejoc.201801443Wan Ngah, W. S., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83(4), 1446-1456. doi:10.1016/j.carbpol.2010.11.004Onsosyen, E., & Skaugrud, O. (2007). Metal recovery using chitosan. Journal of Chemical Technology & Biotechnology, 49(4), 395-404. doi:10.1002/jctb.280490410Puech, P., Plewa, J.-M., Mallet-Ladeira, P., & Monthioux, M. (2016). Spatial confinement model applied to phonons in disordered graphene-based carbons. Carbon, 105, 275-281. doi:10.1016/j.carbon.2016.04.048Dervishi, E., Ji, Z., Htoon, H., Sykora, M., & Doorn, S. K. (2019). Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale, 11(35), 16571-16581. doi:10.1039/c9nr05345jTamor, M. A., & Vassell, W. C. (1994). Raman ‘‘fingerprinting’’ of amorphous carbon films. Journal of Applied Physics, 76(6), 3823-3830. doi:10.1063/1.357385Zhang, H., Sun, K., Feng, Z., Ying, P., & Li, C. (2006). Studies on the SbOx species of SbOx/SiO2 catalysts for methane-selective oxidation to formaldehyde. Applied Catalysis A: General, 305(1), 110-119. doi:10.1016/j.apcata.2006.02.038Wan, F., Guo, J.-Z., Zhang, X.-H., Zhang, J.-P., Sun, H.-Z., Yan, Q., … Wu, X.-L. (2016). In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 8(12), 7790-7799. doi:10.1021/acsami.5b12242Primo, A., Franconetti, A., Magureanu, M., Mandache, N. B., Bucur, C., Rizescu, C., … Garcia, H. (2018). Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chemistry, 20(11), 2611-2623. doi:10.1039/c7gc03397dWei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., & Yu, G. (2009). Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 9(5), 1752-1758. doi:10.1021/nl803279tCincotto, F. H., Canevari, T. C., Machado, S. A. S., Sánchez, A., Barrio, M. A. R., Villalonga, R., & Pingarrón, J. M. (2015). Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochimica Acta, 174, 332-339. doi:10.1016/j.electacta.2015.06.013Kumar, C. R., Anand, N., Kloekhorst, A., Cannilla, C., Bonura, G., Frusteri, F., … Heeres, H. J. (2015). Solvent free depolymerization of Kraft lignin to alkyl-phenolics using supported NiMo and CoMo catalysts. Green Chemistry, 17(11), 4921-4930. doi:10.1039/c5gc01641jJosé Velasco, M., Rubio, F., Rubio, J., & Oteo, J. L. (1999). DSC and FT-IR analysis of the drying process of titanium alkoxide derived precipitates. Thermochimica Acta, 326(1-2), 91-97. doi:10.1016/s0040-6031(98)00580-2Kaiser, B., Bernhardt, T. M., Kinne, M., Rademann, K., & Heidenreich, A. (1999). Formation, stability, and structures of antimony oxide cluster ions. The Journal of Chemical Physics, 110(3), 1437-1449. doi:10.1063/1.478019Aljama, H., Nørskov, J. K., & Abild-Pedersen, F. (2017). Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides. The Journal of Physical Chemistry C, 121(30), 16440-16446. doi:10.1021/acs.jpcc.7b05838Latimer, A. A., Aljama, H., Kakekhani, A., Yoo, J. S., Kulkarni, A., Tsai, C., … Nørskov, J. K. (2017). Mechanistic insights into heterogeneous methane activation. Physical Chemistry Chemical Physics, 19(5), 3575-3581. doi:10.1039/c6cp08003
    corecore