323 research outputs found
Disrupted orbital order and the pseudo-gap in layered 1T-TaS
We present a state-of-the-art density functional theory (DFT) study which
models crucial features of the partially disordered orbital order stacking in
the prototypical layered transition metal dichalcogenide 1T-TaS2 . Our results
not only show that DFT models with realistic assumptions about the orbital
order perpendicular to the layers yield band structures which agree remarkably
well with experiments. They also demonstrate that DFT correctly predicts the
formation of an excitation pseudo-gap which is commonly attributed to
Mott-Hubbard type electron-electron correlations. These results highlight the
importance of interlayer interactions in layered transition metal
dichalcogenides and serve as an intriguing example of how disorder within an
electronic crystal can give rise to pseudo-gap features
Total Denoising: Unsupervised Learning of 3D Point Cloud Cleaning
We show that denoising of 3D point clouds can be learned unsupervised,
directly from noisy 3D point cloud data only. This is achieved by extending
recent ideas from learning of unsupervised image denoisers to unstructured 3D
point clouds. Unsupervised image denoisers operate under the assumption that a
noisy pixel observation is a random realization of a distribution around a
clean pixel value, which allows appropriate learning on this distribution to
eventually converge to the correct value. Regrettably, this assumption is not
valid for unstructured points: 3D point clouds are subject to total noise, i.
e., deviations in all coordinates, with no reliable pixel grid. Thus, an
observation can be the realization of an entire manifold of clean 3D points,
which makes a na\"ive extension of unsupervised image denoisers to 3D point
clouds impractical. Overcoming this, we introduce a spatial prior term, that
steers converges to the unique closest out of the many possible modes on a
manifold. Our results demonstrate unsupervised denoising performance similar to
that of supervised learning with clean data when given enough training examples
- whereby we do not need any pairs of noisy and clean training data.Comment: Proceedings of ICCV 201
Joint Material and Illumination Estimation from Photo Sets in the Wild
Faithful manipulation of shape, material, and illumination in 2D Internet
images would greatly benefit from a reliable factorization of appearance into
material (i.e., diffuse and specular) and illumination (i.e., environment
maps). On the one hand, current methods that produce very high fidelity
results, typically require controlled settings, expensive devices, or
significant manual effort. To the other hand, methods that are automatic and
work on 'in the wild' Internet images, often extract only low-frequency
lighting or diffuse materials. In this work, we propose to make use of a set of
photographs in order to jointly estimate the non-diffuse materials and sharp
lighting in an uncontrolled setting. Our key observation is that seeing
multiple instances of the same material under different illumination (i.e.,
environment), and different materials under the same illumination provide
valuable constraints that can be exploited to yield a high-quality solution
(i.e., specular materials and environment illumination) for all the observed
materials and environments. Similar constraints also arise when observing
multiple materials in a single environment, or a single material across
multiple environments. The core of this approach is an optimization procedure
that uses two neural networks that are trained on synthetic images to predict
good gradients in parametric space given observation of reflected light. We
evaluate our method on a range of synthetic and real examples to generate
high-quality estimates, qualitatively compare our results against
state-of-the-art alternatives via a user study, and demonstrate
photo-consistent image manipulation that is otherwise very challenging to
achieve
Single-image Tomography: 3D Volumes from 2D Cranial X-Rays
As many different 3D volumes could produce the same 2D x-ray image, inverting
this process is challenging. We show that recent deep learning-based
convolutional neural networks can solve this task. As the main challenge in
learning is the sheer amount of data created when extending the 2D image into a
3D volume, we suggest firstly to learn a coarse, fixed-resolution volume which
is then fused in a second step with the input x-ray into a high-resolution
volume. To train and validate our approach we introduce a new dataset that
comprises of close to half a million computer-simulated 2D x-ray images of 3D
volumes scanned from 175 mammalian species. Applications of our approach
include stereoscopic rendering of legacy x-ray images, re-rendering of x-rays
including changes of illumination, view pose or geometry. Our evaluation
includes comparison to previous tomography work, previous learning methods
using our data, a user study and application to a set of real x-rays
Deep Reflectance Maps
Undoing the image formation process and therefore decomposing appearance into
its intrinsic properties is a challenging task due to the under-constraint
nature of this inverse problem. While significant progress has been made on
inferring shape, materials and illumination from images only, progress in an
unconstrained setting is still limited. We propose a convolutional neural
architecture to estimate reflectance maps of specular materials in natural
lighting conditions. We achieve this in an end-to-end learning formulation that
directly predicts a reflectance map from the image itself. We show how to
improve estimates by facilitating additional supervision in an indirect scheme
that first predicts surface orientation and afterwards predicts the reflectance
map by a learning-based sparse data interpolation.
In order to analyze performance on this difficult task, we propose a new
challenge of Specular MAterials on SHapes with complex IllumiNation (SMASHINg)
using both synthetic and real images. Furthermore, we show the application of
our method to a range of image-based editing tasks on real images.Comment: project page: http://homes.esat.kuleuven.be/~krematas/DRM
3D Object Class Detection in the Wild
Object class detection has been a synonym for 2D bounding box localization
for the longest time, fueled by the success of powerful statistical learning
techniques, combined with robust image representations. Only recently, there
has been a growing interest in revisiting the promise of computer vision from
the early days: to precisely delineate the contents of a visual scene, object
by object, in 3D. In this paper, we draw from recent advances in object
detection and 2D-3D object lifting in order to design an object class detector
that is particularly tailored towards 3D object class detection. Our 3D object
class detection method consists of several stages gradually enriching the
object detection output with object viewpoint, keypoints and 3D shape
estimates. Following careful design, in each stage it constantly improves the
performance and achieves state-ofthe-art performance in simultaneous 2D
bounding box and viewpoint estimation on the challenging Pascal3D+ dataset
What Is Around The Camera?
How much does a single image reveal about the environment it was taken in? In
this paper, we investigate how much of that information can be retrieved from a
foreground object, combined with the background (i.e. the visible part of the
environment). Assuming it is not perfectly diffuse, the foreground object acts
as a complexly shaped and far-from-perfect mirror. An additional challenge is
that its appearance confounds the light coming from the environment with the
unknown materials it is made of. We propose a learning-based approach to
predict the environment from multiple reflectance maps that are computed from
approximate surface normals. The proposed method allows us to jointly model the
statistics of environments and material properties. We train our system from
synthesized training data, but demonstrate its applicability to real-world
data. Interestingly, our analysis shows that the information obtained from
objects made out of multiple materials often is complementary and leads to
better performance.Comment: Accepted to ICCV. Project:
http://homes.esat.kuleuven.be/~sgeorgou/multinatillum
- …