1,297 research outputs found

    The familiarity, attitude, and knowledge of complementary medicine in attention deficit hyperactivity disorder in children amongst paediatricians in Gauteng

    Get PDF
    M.Tech. (Homoeopathy)Abstract: Background Attention Deficit Hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a high incidence among children worldwide. The current allopathic approaches to its treatment are associated with several adverse and long-term effects which contribute to parents seeking alternative options such as complementary medicines (CM) and related therapies to help manage their child’s ADHD. Aim The aim of this study is to determine the familiarity, attitude, and knowledge of CM in ADHD in children amongst paediatricians in Gauteng, by means of a survey with the utilization of a questionnaire. Setting The questionnaire was completed by means of a survey and conducted in Gauteng with participating paediatricians by means of email, telephone and in person. Methods A quantitative, descriptive survey design was used. Paediatricians practicing in Gauteng listed on Medpages and the Paediatrician Management Group (PMG) were recruited. Data was obtained through a structured 21-item, questionnaire. Data was descriptively analysed using IBM SPSS 27.0. Results A total of 23 paediatricians participated in the research study. Only a small portion of paediatricians reported feeling comfortable referring or recommending CM to their ADHD patients. Most paediatricians had previously been exposed to CM but reported only being limitedly familiar with the different CM therapies available. The majority of the paediatricians were found to be familiar with both self-help practices and over-the-counter (OTC) CM products used in the management of ADHD. Most paediatricians reported asking their patients about CM use in their ADHD and believed that Homeopathy and Phytotherapy was most frequently used CM in ADHD treatment. The majority of paediatricians did not consider..

    Salt Uptake in Natural Channels Traversing Mancos Shales in the Price River Basin, Utah

    Get PDF
    Field and laboratory measurements of process rates for runoff and salt movement were used to develop and calibrate a hydrosalinity model of outlfows from the Price River Basin at Woodside, Utah. The field measurements were specifically used to formulate a model for estimating surface flow (both overland and from small ephemeral channels) in the Coal Creek Basin on the valley floor of the Price River Basin. The basin simulation assessment model (BSAM) was used to combine local flows and model total outflow from the Price River. The results must be regarded as a first generation model that, while giving ostensibly reasonable results, needs much additional refinement and validation by collecting additional field data. As to field data, observed salt loading rates reached 518 pounds per square mile daily, groundwater inflow declined steadily throughout the summer but maintained constant salt concentrations, channel efflorescence varied more than 100 fold with the largest concentrations occurring in saturated bed material, and turbulent mixing and cyclic drying added to salt dissolution rates. Extrapolation of the results with the Coal Creek model showed only a very small percentage of the salt loading from the valley floor to originate from natural lands. BSAM showed average annual salt leaving the Basin at Woodside to be 190,000 tons, 114,000 coming from the mountain area and 76,000 from the valley floor. Of the valley floor contribution, only 3,500 tons are produced by surface runoff from nonirrigated areas. Topics to be emphasized in further model development include salt contribution from percolation snowmelt on natural lands, groundwater movement, the formation and dissolution of efflorescence, and salt-sediment transport by the sharp hydrographs on small ephemeral streams

    An Energy-Water Corridor Along the US/Mexico Border: Changing the \u27Conversation\u27

    Get PDF
    Over the last decade, migration has become a divisive issue around the world. A large number of countries have erected barriers along their borders to prevent migration, leading to geopolitical tension. Climate change effects will likely exacerbate migration tensions, which will require bold and creative solutions to this difficult social predicament. Here we detail a plan to construct an energy-water corridor along a border that has been the focus of much attention recently: The U.S.-Mexico border. Our proposed solution helps to alleviate some of the negative effects of climate change, while providing energy and economic stimulus to an area that begs for sustainable development. The energy-water corridor will take advantage of the unique renewable energy resources along the border states and will use state-of-the-art water desalination and treatment systems to provide the resources for economic development in the region

    Exposure Patterns Driving Ebola Transmission in West Africa:A Retrospective Observational Study

    Get PDF
    BackgroundThe ongoing West African Ebola epidemic began in December 2013 in Guinea, probably from a single zoonotic introduction. As a result of ineffective initial control efforts, an Ebola outbreak of unprecedented scale emerged. As of 4 May 2015, it had resulted in more than 19,000 probable and confirmed Ebola cases, mainly in Guinea (3,529), Liberia (5,343), and Sierra Leone (10,746). Here, we present analyses of data collected during the outbreak identifying drivers of transmission and highlighting areas where control could be improved.Methods and findingsOver 19,000 confirmed and probable Ebola cases were reported in West Africa by 4 May 2015. Individuals with confirmed or probable Ebola ("cases") were asked if they had exposure to other potential Ebola cases ("potential source contacts") in a funeral or non-funeral context prior to becoming ill. We performed retrospective analyses of a case line-list, collated from national databases of case investigation forms that have been reported to WHO. These analyses were initially performed to assist WHO's response during the epidemic, and have been updated for publication. We analysed data from 3,529 cases in Guinea, 5,343 in Liberia, and 10,746 in Sierra Leone; exposures were reported by 33% of cases. The proportion of cases reporting a funeral exposure decreased over time. We found a positive correlation (r = 0.35, p ConclusionsAchieving elimination of Ebola is challenging, partly because of super-spreading. Safe funeral practices and fast hospitalisation contributed to the containment of this Ebola epidemic. Continued real-time data capture, reporting, and analysis are vital to track transmission patterns, inform resource deployment, and thus hasten and maintain elimination of the virus from the human population

    Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales

    Get PDF
    While wetlands are the largest natural source of methane (CH4) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by similar to 17 +/- 11 days, and lagged air and soil temperature by median values of 8 +/- 16 and 5 +/- 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4. At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.Peer reviewe

    2016 International Land Model Benchmarking (ILAMB) Workshop Report

    Get PDF
    As earth system models (ESMs) become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of terrestrial biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistryclimate feedbacks and ecosystem processes in these models are essential for reducing the acknowledged substantial uncertainties in 21st century climate change projections

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control