3 research outputs found

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Instrumentation for optical path and amplitude measurements on biological cells

    No full text
    Thesis (M.S.)--University of Rochester. College of Engineering and Applied Science. Institute of Optics, 1977. This thesis was digitized by the Institute of Optics in 2014 and was determined to have lapsed into the public domain. If you are the author and have questions about the digitization of your work, please contact Kari Brick, Graduate Program Coordinator for the Institute of Optics, at [email protected]. Other contact information for the Institute is available at http://www.optics.rochester.eduAn instrument was designed and fabricated, based on the principles of interferometry and optical heterodyne detection, which measures microscopic optical path and amplitude variations in biological cells. Optical path variations in the range of λ/100-8λ can be measured with up to a resolution of 2μ. Information is recorded in a real-time process with a point by point correspondence between the test object and its recorded information. Data is presented in the form of cell profiles and requires no analysis for its interpretation. Performance tests were made on a variety of amplitude and phase test objects to illustrate the systems capabilities. Sample measurements on biological cells taken from gynecologic specimen are also presented

    The James Webb Space Telescope Mission

    No full text
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit
    corecore