32,759 research outputs found
Learning in abstract memory schemes for dynamic optimization
We investigate an abstraction based memory scheme for evolutionary algorithms in dynamic environments. In this scheme, the abstraction of good solutions (i.e., their approximate location in the search space) is stored in the memory instead of good solutions themselves and is employed to improve future problem solving. In particular, this paper shows how learning takes place in the abstract memory scheme and how the performance in problem solving changes over time for different kinds of dynamics in the fitness landscape. The experiments show that the abstract memory enables learning processes and efficiently improves the performance of evolutionary algorithms in dynamic environments
Learning behavior in abstract memory schemes for dynamic optimization problems
This is the post-print version of this article. The official article can be accessed from the link below - Copyright @ 2009 Springer VerlagIntegrating memory into evolutionary algorithms is one major approach to enhance their performance in dynamic environments. An abstract memory scheme has been recently developed for evolutionary algorithms in dynamic environments, where the abstraction of good solutions is stored in the memory instead of good solutions themselves to improve future problem solving. This paper further investigates this abstract memory with a focus on understanding the relationship between learning and memory, which is an important but poorly studied issue for evolutionary algorithms in dynamic environments. The experimental study shows that the abstract memory scheme enables learning processes and hence efficiently improves the performance of evolutionary algorithms in dynamic environments.The work by S. Yang was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1
Hyper-learning for population-based incremental learning in dynamic environments
This article is posted here here with permission from IEEE - Copyright @ 2009 IEEEThe population-based incremental learning (PBIL) algorithm is a combination of evolutionary optimization and competitive learning. Recently, the PBIL algorithm has been applied for dynamic optimization problems. This paper investigates the effect of the learning rate, which is a key parameter of PBIL, on the performance of PBIL in dynamic environments. A hyper-learning scheme is proposed for PBIL, where the learning rate is temporarily raised whenever the environment changes. The hyper-learning scheme can be combined with other approaches, e.g., the restart and hypermutation schemes, for PBIL in dynamic environments. Based on a series of dynamic test problems, experiments are carried out to investigate the effect of different learning rates and the proposed hyper-learning scheme in combination with restart and hypermutation schemes on the performance of PBIL. The experimental results show that the learning rate has a significant impact on the performance of the PBIL algorithm in dynamic environments and that the effect of the proposed hyper-learning scheme depends on the environmental dynamics and other schemes combined in the PBIL algorithm.The work by Shengxiang Yang was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/E060722/1
A Poincar\'e section for the general heavy rigid body
A general recipe is developed for the study of rigid body dynamics in terms
of Poincar\'e surfaces of section. A section condition is chosen which captures
every trajectory on a given energy surface. The possible topological types of
the corresponding surfaces of section are determined, and their 1:1 projection
to a conveniently defined torus is proposed for graphical rendering.Comment: 25 pages, 10 figure
On the Myth of a General National Culture. Making Visible Specific Cultural Characteristics of Learners in Different\ud Educational Contexts
The concept of a few values that can characteristically explain all units of culture (Schneider, 1968, pp.1-2) within any national context generally sounds promising. In order to take design-oriented decisions on culture-specific research questions, such characteristic values, particularly if already determined for many countries, would allow a massive reduction of effort. However, we were unsure if the contexts of academic and professional education allowed the adoption of such values without loosing the characteristic information, which are crucial for designing context sensitive e-Learning contents. In both educational scenarios we investigated the subcultures āfacultyā, āuniversityā, āenterpriseā, and ānationā. In this paper, we exemplarily discuss our studyās results regarding one selected topic\ud
from our questionnaire, i.e. the ārole of the lecturerā. Actually, we found major differences between the investigated scenarios. Thus, we came to the conclusion\ud
that in our context, adapting, e. g. Hofstedeās national values, would not lead to a learning design that takes the context-specific cultural differences into consideration
Low speed, long term tracking electric drive system has zero backlash
Electric drive system provides low speed, long term tracking of targets that move at a sidereal rate. It utilizes eddy-current energized actuators that are free from radio frequency interference generation and a solid state feedback amplifier with provisions for antibacklash biasing
Modified kagome physics in the natural spin-1/2 kagome lattice systems - kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2
The recently discovered natural minerals Cu3Zn(OH)6Cl2 and Cu3Mg(OH)6Cl2 are
spin 1/2 systems with an ideal kagome geometry. Based on electronic structure
calculations, we develop a realistic model which includes couplings across the
kagome hexagons beyond the original kagome model that are intrinsic in real
kagome materials. Exact diagonalization studies for the derived model reveal a
strong impact of these couplings on the magnetic ground state. Our predictions
could be compared to and supplied with neutron scattering, thermodynamic and
NMR data.Comment: 5 pages, 5 figures, 1 tabl
Reversible motion drive system Patent
Drive system for parabolic tracking antenna with reversible motion and minimal backlas
An application of interactive computer graphics technology to the design of dispersal mechanisms
Interactive computer graphics technology is combined with a general purpose mechanisms computer code to study the operational behavior of three guided bomb dispersal mechanism designs. These studies illustrate the use of computer graphics techniques to discover operational anomalies, to assess the effectiveness of design improvements, to reduce the time and cost of the modeling effort, and to provide the mechanism designer with a visual understanding of the physical operation of such systems
- ā¦