32,720 research outputs found
I. Collisional evolution and reddening of asteroid surfaces: The problem of conflicting timescales and the role of size-dependent effects
Space weathering is the generic term used for processes that modify the
optical properties of surfaces of atmosphereless rocky bodies under exposure to
the space environment. The general agreement about the relevance of the effects
of space weathering on the spectral properties of S-complex asteroids fails
when some basic quantitative estimates are attempted. In particular, there is
severe disagreement regarding the typical timescales for significant spectral
reddening to occur, ranging from 1 Myr to 1 Gyr. Generally speaking, the
spectral reddening of an individual object can be considered as the sum of
three terms, one (which is relevant for statistical analyses) depending on the
exposure of the object to space weathering during its lifetime, a second one
due to the original surface composition, and a third one (a "noise" term) due
to the combination of poorly constrained effects (e.g., structure and texture
of the surface). The surface of an asteroid is usually covered by regolith, and
its presence and properties presumably play a critical role in the weathering
processes. In this paper we discuss the role played by collisional evolution in
affecting the spectral properties of asteroids and refreshing the surfaces due
to the formation of ejecta, and the necessity of a simultaneous modeling of
collisions and weathering processes. We introduce a new idea, based on the
possibility of a sort of saturation of the refreshing process whenever a
massive reaccumulation of the impact ejecta takes place. In this case, a
dependence of the overall reddening on the asteroid size should naturally come
out. We show that this conclusion is indeed supported by available main belt
asteroid spectroscopic data.Comment: Accepted by MNRA
Direct N-body Simulations of Rubble Pile Collisions
There is increasing evidence that many km-sized bodies in the Solar System
are piles of rubble bound together by gravity. We present results from a
project to map the parameter space of collisions between km-sized spherical
rubble piles. The results will assist in parameterization of collision outcomes
for Solar System formation models and give insight into fragmentation scaling
laws. We use a direct numerical method to evolve the positions and velocities
of the rubble pile particles under the constraints of gravity and physical
collisions. We test the dependence of the collision outcomes on impact
parameter and speed, impactor spin, mass ratio, and coefficient of restitution.
Speeds are kept low (< 10 m/s, appropriate for dynamically cool systems such as
the primordial disk during early planet formation) so that the maximum strain
on the component material does not exceed the crushing strength. We compare our
results with analytic estimates and hydrocode simulations. Off-axis collisions
can result in fast-spinning elongated remnants or contact binaries while fast
collisions result in smaller fragments overall. Clumping of debris escaping
from the remnant can occur, leading to the formation of smaller rubble piles.
In the cases we tested, less than 2% of the system mass ends up orbiting the
remnant. Initial spin can reduce or enhance collision outcomes, depending on
the relative orientation of the spin and orbital angular momenta. We derive a
relationship between impact speed and angle for critical dispersal of mass in
the system. We find that our rubble piles are relatively easy to disperse, even
at low impact speed, suggesting that greater dissipation is required if rubble
piles are the true progenitors of protoplanets.Comment: 30 pages including 4 tables, 8 figures. Revised version to be
published in Icarus
Interplanetary Trajectory Optimization with Powerlimited Propulsion Systems
A trajectory-optimization process is described in which the optimum thrust equations are derived using the calculus of variations. The magnitude of the thrust is constrained within an upper and a lower bound, but the thrust direction is arbitrary. This formulation allows both the constant-thrust program and the variable-thrust program to be considered. For the constant-thrust program, certain propulsion-system parameters are optimized for maximum final vehicle mass. This theory has been used to study interplanetary missions to Venus and Mars using a power-limited propulsion system. Both one-way and round trip rendezvous trajectories are considered. The analysis employs a two-body inverse-square force-field model of three dimensions. An iterative routine used to solve the two-point boundary-value problem is described in the Appendix
Collisional Formation and Modeling of Asteroid Families
In the last decade, thanks to the development of sophisticated numerical
codes, major breakthroughs have been achieved in our understanding of the
formation of asteroid families by catastrophic disruption of large parent
bodies. In this review, we describe numerical simulations of asteroid
collisions that reproduced the main properties of families, accounting for both
the fragmentation of an asteroid at the time of impact and the subsequent
gravitational interactions of the generated fragments. The simulations
demonstrate that the catastrophic disruption of bodies larger than a few
hundred meters in diameter leads to the formation of large aggregates due to
gravitational reaccumulation of smaller fragments, which helps explain the
presence of large members within asteroid families. Thus, for the first time,
numerical simulations successfully reproduced the sizes and ejection velocities
of members of representative families. Moreover, the simulations provide
constraints on the family dynamical histories and on the possible internal
structure of family members and their parent bodies.Comment: Chapter to appear in the (University of Arizona Press) Space Science
Series Book: Asteroids I
Sunward-propagating Alfv\'enic fluctuations observed in the heliosphere
The mixture/interaction of anti-sunward-propagating Alfv\'enic fluctuations
(AFs) and sunward-propagating Alfv\'enic fluctuations (SAFs) is believed to
result in the decrease of the Alfv\'enicity of solar wind fluctuations with
increasing heliocentric distance. However, SAFs are rarely observed at 1 au and
solar wind AFs are found to be generally outward. Using the measurements from
Voyager 2 and Wind, we perform a statistical survey of SAFs in the heliosphere
inside 6 au. We first report two SAF events observed by Voyager 2. One is in
the anti-sunward magnetic sector with a strong positive correlation between the
fluctuations of magnetic field and solar wind velocity. The other one is in the
sunward magnetic sector with a strong negative magnetic field-velocity
correlation. Statistically, the percentage of SAFs increases gradually with
heliocentric distance, from about 2.7% at 1.0 au to about 8.7% at 5.5 au. These
results provide new clues for understanding the generation mechanism of SAFs
PLASMA NEAR THE HELIOSHEATH: OBSERVATIONS AND INTERPRETATIONS
Voyager 2 (V2) has observed heliosheath plasma since 2007 August. The plasma flux decreases by 25% before the termination shock (TS), then, as V2 moved into the heliosheath, the plasma density, temperature, and flux all decreased by an additional factor of 2. We suggest three effects combine to cause these decreases. (1) V2 moved into the lower-flux transition region between the low- and high-speed solar wind. This hypothesis is consistent with Ulysses observations of the transition location, explains the 25% decrease in solar wind flux observed before the TS crossing, and can reconcile discrepancies between the V2 and Voyager 1 heliosheath speeds and between the V2 speeds and model results. (2) The weaker source at the Sun. (3) The heliosheath plasma turning and flowing toward the heliotail.United States. National Aeronautics and Space Administration (Jet Propulsion Laboratory (U.S.). Contract 959203)United States. National Aeronautics and Space Administration (Grant NAG5-8947)United States. National Aeronautics and Space Administration (Grant NNX08AE49G
Development of a carbon fibre composite active mirror: Design and testing
Carbon fibre composite technology for lightweight mirrors is gaining
increasing interest in the space- and ground-based astronomical communities for
its low weight, ease of manufacturing, excellent thermal qualities and
robustness. We present here first results of a project to design and produce a
27 cm diameter deformable carbon fibre composite mirror. The aim was to produce
a high surface form accuracy as well as low surface roughness. As part of this
programme, a passive mirror was developed to investigate stability and coating
issues. Results from the manufacturing and polishing process are reported here.
We also present results of a mechanical and thermal finite element analysis, as
well as early experimental findings of the deformable mirror. Possible
applications and future work are discussed.Comment: Accepted by Optical Engineering. Figures 1-7 on
http://www.star.ucl.ac.uk/~sk/OEpaper_files
Will I? won't I? Why do men who have sex with men present for post-exposure prophylaxis for sexual exposures?
Background: Failures of post-exposure prophylaxis following sexual exposure (PEPSE) to prevent seroconversion have been reported and are often associated with ongoing risk exposure. Understanding why men who have sex with men (MSM) access PEPSE on some occasions and not others may lead to more effective health promotion and disease prevention strategies Methods: A qualitative study design using semi-structured interviews of 15 MSM within 6 months of them initiating PEPSE treatment at an HIV outpatient service in Brighton, UK. Results: PEPSE seeking was motivated by a number of factors: an episode that related to a particular sexual partner and their behaviour; the characteristics of the venue where the risk occurred; the respondent’s state of mind and influences of alcohol and recreational drug use; and their perceived beliefs on the effectiveness of PEPSE. Help was sought in the light of a “one-off” or “unusual” event. Many respondents felt they were less likely to behave in a risky manner following PEPSE. Conclusion: If PEPSE is to be effective as a public health measure, at risk individuals need to be empowered to make improved risk calculations from an increased perception that they could be exposed to HIV if they continue their current behaviour patterns. The concern is that PEPSE was sought by a low number of MSM implying that a greater number are not using the service based on failure to make accurate risk calculations or recognise high-risk scenario
The integration of on-line monitoring and reconfiguration functions using IEEE1149.4 into a safety critical automotive electronic control unit.
This paper presents an innovative application of IEEE 1149.4 and the integrated diagnostic reconfiguration (IDR) as tools for the implementation of an embedded test solution for an automotive electronic control unit, implemented as a fully integrated mixed signal system. The paper describes how the test architecture can be used for fault avoidance with results from a hardware prototype presented. The paper concludes that fault avoidance can be integrated into mixed signal electronic systems to handle key failure modes
- …