212 research outputs found

    A Maximum Entropy Method of Obtaining Thermodynamic Properties from Quantum Monte Carlo Simulations

    Full text link
    We describe a novel method to obtain thermodynamic properties of quantum systems using Baysian Inference -- Maximum Entropy techniques. The method is applicable to energy values sampled at a discrete set of temperatures from Quantum Monte Carlo Simulations. The internal energy and the specific heat of the system are easily obtained as are errorbars on these quantities. The entropy and the free energy are also obtainable. No assumptions as to the specific functional form of the energy are made. The use of a priori information, such as a sum rule on the entropy, is built into the method. As a non-trivial example of the method, we obtain the specific heat of the three-dimensional Periodic Anderson Model.Comment: 8 pages, 3 figure

    Chronic Mechanical Circulatory Support for Inotrope-Dependent Heart Failure Patients Who Are Not Transplant Candidates Results of the INTrEPID Trial

    Get PDF
    ObjectivesThis study evaluated the impact of left ventricular assist device (LVAD) support on survival and quality of life in inotrope-dependent heart failure patients ineligible for cardiac transplantation.BackgroundThe role for LVADs as a bridge to cardiac transplantation has been established, but data supporting their role as permanent therapy in nontransplant candidates are limited.MethodsThe INTrEPID (Investigation of Nontransplant-Eligible Patients Who Are Inotrope Dependent) trial was a prospective, nonrandomized clinical trial comparing LVAD with optimal medical therapy (OMT). Fifty-five patients with New York Heart Association functional class IV symptoms who failed weaning from inotropic support were offered a Novacor LVAD. Eighteen of these patients did not receive an LVAD owing to patient preference (n = 14) or unavailability of the device (n = 4) but consented to follow-up and constitute a contemporaneous control group.ResultsThe LVAD and OMT patients were well matched for demographic and disease severity measures, except OMT patients had a lower mean serum sodium (128 mg/dl vs. 134 mg/dl; p = 0.001) and a higher mean blood urea nitrogen concentration (59 vs. 40; p = 0.02). The LVAD-treated patients had superior survival rates at 6 months (46% vs. 22%; p = 0.03) and 12 months (27% vs. 11%; p = 0.02). Adverse event rates were higher in the OMT group. Eighty-five percent of the LVAD-treated patients had minimal or no heart failure symptoms. Five LVAD patients and 1 OMT patient improved sufficiently while on therapy to qualify for cardiac transplantation.ConclusionsInotrope-dependent heart failure patients who are ineligible for transplantation have a high short-term mortality rate and derive a significant survival advantage from “destination” mechanical circulatory support

    Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis.

    Get PDF
    The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis

    Rollable Multisegment Dielectric Elastomer Minimum Energy Structures for a Deployable Microsatellite Gripper

    Get PDF
    Debris in space presents an ever-increasing problem for spacecraft in Earth orbit. As a step in the mitigation of this issue, the CleanSpace One (CSO) microsatellite has been proposed. Its mission is to perform active debris removal of a decommissioned nanosatellite (the CubeSat SwissCube). An important aspect of this project is the development of the gripper system that will entrap the capture target. We present the development of rollable dielectric elastomer minimum energy structures (DEMES) as the main component of CSO's deployable gripper. DEMES consist of a prestretched dielectric elastomer actuator membrane bonded to a flexible frame. The actuator finds equilibrium in bending when the prestretch is released and the bending angle can be changed by the application of a voltage bias. The inherent flexibility and lightweight nature of the DEMES enables the gripper to be stored in a rolled-up state prior to deployment. We fabricated proof-of-concept actuators of three different geometries using a robust and repeatable fabrication methodology. The resulting actuators were mechanically resilient to external deformation, and display conformability to objects of varying shapes and sizes. Actuator mass is less than 0.65 g and all the actuators presented survived the rolling-up and subsequent deployment process. Our devices demonstrate a maximum change of bending angle of more than 60° and a maximum gripping (reaction) force of 2.2 mN for a single actuator

    Macular hole formation, progression, and surgical repair: case series of serial optical coherence tomography and time lapse morphing video study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To use a new medium to dynamically visualize serial optical coherence tomography (OCT) scans in order to illustrate and elucidate the pathogenesis of idiopathic macular hole formation, progression, and surgical closure.</p> <p>Case Presentations</p> <p>Two patients at the onset of symptoms with early stage macular holes and one patient following repair were followed with serial OCTs. Images centered at the fovea and at the same orientation were digitally exported and morphed into an Audiovisual Interleaving (avi) movie format. Morphing videos from serial OCTs allowed the OCTs to be viewed dynamically. The videos supported anterior-posterior vitreofoveal traction as the initial event in macular hole formation. Progression of the macular hole occurred with increased cystic thickening of the fovea without evidence of further vitreofoveal traction. During cyst formation, the macular hole enlarged as the edges of the hole became elevated from the retinal pigment epithelium (RPE) with an increase in subretinal fluid. Surgical repair of a macular hole revealed initial closure of the macular hole with subsequent reabsorption of the sub-retinal fluid and restoration of the foveal contour.</p> <p>Conclusions</p> <p>Morphing videos from serial OCTs are a useful tool and helped illustrate and support anterior-posterior vitreofoveal traction with subsequent retinal hydration as the pathogenesis of idiopathic macular holes.</p

    Uncooperative Rendezvous and Docking for MicroSats

    Get PDF
    This paper proposes a solution to perform active debris removal with a cost effective microsatellite. A complex aspect of debris removal in space is the detection and positive identification of the debris, medium to close approach as well as the orbital rendezvous and following on-site operations. These aspects will require a mix of several technologies, some of which already exist, and some of which will need to be miniaturized and adapted for programs such as CleanSpace One. The rendezvous phases in particular will require a good knowledge of the position of the chaser as well as that of the target. In the CleanSpace One concept, the approach and in-orbit maneuvering will be performed by a micropropulsion system based on miniature thrusters. This concept also proposes that grabbing will be done by means of a robotic claw, which will adapt itself to the form of a non-cooperating object. These are key technologies that currently being developed in EPFL laboratories. The overall microsatellite uses CubeSat and COTS technologies
    • …
    corecore