1,612 research outputs found

    Preparing for a Bioterrorist Attack: Legal and Administrative Strategies1

    Get PDF
    This article proposes and discusses legal and administrative preparations for a bioterrorist attack. To perform the duties expected of public health agencies during a disease outbreak caused by bioterrorism, an agency must have a sufficient number of employees and providers at work and a good communications system between staff in the central offices of the public health agency and those in outlying or neighboring agencies and hospitals. The article proposes strategies for achieving these objectives as well as for removing legal barriers that discourage agencies, institutions, and persons from working together for the overall good of the community. Issues related to disease surveillance and special considerations regarding public health restrictive orders are discussed

    Biophotonic Tools in Cell and Tissue Diagnostics.

    Get PDF
    In order to maintain the rapid advance of biophotonics in the U.S. and enhance our competitiveness worldwide, key measurement tools must be in place. As part of a wide-reaching effort to improve the U.S. technology base, the National Institute of Standards and Technology sponsored a workshop titled "Biophotonic tools for cell and tissue diagnostics." The workshop focused on diagnostic techniques involving the interaction between biological systems and photons. Through invited presentations by industry representatives and panel discussion, near- and far-term measurement needs were evaluated. As a result of this workshop, this document has been prepared on the measurement tools needed for biophotonic cell and tissue diagnostics. This will become a part of the larger measurement road-mapping effort to be presented to the Nation as an assessment of the U.S. Measurement System. The information will be used to highlight measurement needs to the community and to facilitate solutions

    Nano-structured morphological features of pulsed direct current magnetron sputtered Mo films for photovoltaic applications

    Get PDF
    Historically, molybdenum thin films have been used as the back contact for Cu(In,Ga)Se2 based solar cells and as such the properties of these layers play an important role in the overall cell structure. This paper describes the production of molybdenum films using pulsed d.c magnetron sputtering from compressed molybdenum powder targets. The films were deposited at different substrate temperatures under constant power and constant current modes, and analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and four point resistance probe. Mechanical strain and resistivity were found to decrease with substrate temperature together with a shift in the (110) crystallographic plane towards higher diffraction angles. All films were well adhered to the glass substrates irrespective of their high tensile strain. Surface morphology analysis revealed the presence of nano-structured stress relief patterns which can enhance the nucleation sites for subsequent CuInSe2 deposition. A high-resolution cross sectional image showed the columnar growth of the films. Surface roughness analysis revealed that roughness increased with increase in substrate temperature

    Synthesis of the elements in stars: forty years of progress

    Get PDF
    Forty years ago Burbidge, Burbidge, Fowler, and Hoyle combined what we would now call fragmentary evidence from nuclear physics, stellar evolution and the abundances of elements and isotopes in the solar system as well as a few stars into a synthesis of remarkable ingenuity. Their review provided a foundation for forty years of research in all of the aspects of low energy nuclear experiments and theory, stellar modeling over a wide range of mass and composition, and abundance studies of many hundreds of stars, many of which have shown distinct evidence of the processes suggested by B2FH. In this review we summarize progress in each of these fields with emphasis on the most recent developments

    DPP6 regulation of dendritic morphogenesis impacts hippocampal synaptic development

    Get PDF
    Dipeptidyl-peptidase 6 is an auxiliary subunit of Kv4-mediated A-type K+ channels that, in addition to enhancing channel surface expression, potently accelerates their kinetics. The dipeptidyl-peptidase 6 gene has been associated with a number of human central nervous system disorders including autism spectrum disorders and schizophrenia. Here we employ knockdown and genetic deletion of dipeptidyl-peptidase 6 to reveal its importance for the formation and stability of dendritic filopodia during early neuronal development. We find that the hippocampal neurons lacking dipeptidyl-peptidase 6 show a sparser dendritic branching pattern along with fewer spines throughout development and into adulthood. In electrophysiological and imaging experiments, we show that these deficits lead to fewer functional synapses and occur independently of the potassium channel subunit Kv4.2. We report that dipeptidyl-peptidase 6 interacts with a filopodia-associated myosin as well as with fibronectin in the extracellular matrix. dipeptidyl-peptidase 6 therefore has an unexpected but important role in cell adhesion and motility, impacting the hippocampal synaptic development and function
    corecore