290 research outputs found

    Sparse Multivariate Modeling: Priors and Applications

    Get PDF

    Conditioning on Time is All You Need for Synthetic Survival Data Generation

    Full text link
    Synthetic data generation holds considerable promise, offering avenues to enhance privacy, fairness, and data accessibility. Despite the availability of various methods for generating synthetic tabular data, challenges persist, particularly in specialized applications such as survival analysis. One significant obstacle in survival data generation is censoring, which manifests as not knowing the precise timing of observed (target) events for certain instances. Existing methods face difficulties in accurately reproducing the real distribution of event times for both observed (uncensored) events and censored events, i.e., the generated event-time distributions do not accurately match the underlying distributions of the real data. So motivated, we propose a simple paradigm to produce synthetic survival data by generating covariates conditioned on event times (and censoring indicators), thus allowing one to reuse existing conditional generative models for tabular data without significant computational overhead, and without making assumptions about the (usually unknown) generation mechanism underlying censoring. We evaluate this method via extensive experiments on real-world datasets. Our methodology outperforms multiple competitive baselines at generating survival data, while improving the performance of downstream survival models trained on it and tested on real data

    Deconvolutional Latent-Variable Model for Text Sequence Matching

    Full text link
    A latent-variable model is introduced for text matching, inferring sentence representations by jointly optimizing generative and discriminative objectives. To alleviate typical optimization challenges in latent-variable models for text, we employ deconvolutional networks as the sequence decoder (generator), providing learned latent codes with more semantic information and better generalization. Our model, trained in an unsupervised manner, yields stronger empirical predictive performance than a decoder based on Long Short-Term Memory (LSTM), with less parameters and considerably faster training. Further, we apply it to text sequence-matching problems. The proposed model significantly outperforms several strong sentence-encoding baselines, especially in the semi-supervised setting.Comment: Accepted by AAAI-201

    Fully digital encryption technique

    Get PDF
    We propose an alternative fully digital encryption technique based on using the Fourier transform of the original object to be processed and a speckled reference wave as encryption mask. Once encrypted, the Fourier transform spectrum of the object is holographically stored. The original data recovering is performed by digital reconstruction using the same encryption mask, which is also holographically stored. Quality of reconstructed data is evaluated as a function of the sensed encrypted data. Computer simulations and experimental results are presented to demonstrate the method

    Sparse Linear Identifiable Multivariate Modeling

    Full text link
    In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully Bayesian hierarchy for sparse models using slab and spike priors (two-component delta-function and continuous mixtures), non-Gaussian latent factors and a stochastic search over the ordering of the variables. The framework, which we call SLIM (Sparse Linear Identifiable Multivariate modeling), is validated and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable computational complexity. We attribute this mainly to the stochastic search strategy used, and to parsimony (sparsity and identifiability), which is an explicit part of the model. We propose two extensions to the basic i.i.d. linear framework: non-linear dependence on observed variables, called SNIM (Sparse Non-linear Identifiable Multivariate modeling) and allowing for correlations between latent variables, called CSLIM (Correlated SLIM), for the temporal and/or spatial data. The source code and scripts are available from http://cogsys.imm.dtu.dk/slim/.Comment: 45 pages, 17 figure
    corecore