61 research outputs found
Global sensitivity analysis of computer models with functional inputs
Global sensitivity analysis is used to quantify the influence of uncertain
input parameters on the response variability of a numerical model. The common
quantitative methods are applicable to computer codes with scalar input
variables. This paper aims to illustrate different variance-based sensitivity
analysis techniques, based on the so-called Sobol indices, when some input
variables are functional, such as stochastic processes or random spatial
fields. In this work, we focus on large cpu time computer codes which need a
preliminary meta-modeling step before performing the sensitivity analysis. We
propose the use of the joint modeling approach, i.e., modeling simultaneously
the mean and the dispersion of the code outputs using two interlinked
Generalized Linear Models (GLM) or Generalized Additive Models (GAM). The
``mean'' model allows to estimate the sensitivity indices of each scalar input
variables, while the ``dispersion'' model allows to derive the total
sensitivity index of the functional input variables. The proposed approach is
compared to some classical SA methodologies on an analytical function. Lastly,
the proposed methodology is applied to a concrete industrial computer code that
simulates the nuclear fuel irradiation
Global Sensitivity Analysis of Stochastic Computer Models with joint metamodels
The global sensitivity analysis method, used to quantify the influence of
uncertain input variables on the response variability of a numerical model, is
applicable to deterministic computer code (for which the same set of input
variables gives always the same output value). This paper proposes a global
sensitivity analysis methodology for stochastic computer code (having a
variability induced by some uncontrollable variables). The framework of the
joint modeling of the mean and dispersion of heteroscedastic data is used. To
deal with the complexity of computer experiment outputs, non parametric joint
models (based on Generalized Additive Models and Gaussian processes) are
discussed. The relevance of these new models is analyzed in terms of the
obtained variance-based sensitivity indices with two case studies. Results show
that the joint modeling approach leads accurate sensitivity index estimations
even when clear heteroscedasticity is present
Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes
Composite likelihoods are increasingly used in applications where the full
likelihood is analytically unknown or computationally prohibitive. Although the
maximum composite likelihood estimator has frequentist properties akin to those
of the usual maximum likelihood estimator, Bayesian inference based on
composite likelihoods has yet to be explored. In this paper we investigate the
use of the Metropolis--Hastings algorithm to compute a pseudo-posterior
distribution based on the composite likelihood. Two methodologies for adjusting
the algorithm are presented and their performance on approximating the true
posterior distribution is investigated using simulated data sets and real data
on spatial extremes of rainfall
Likelihood-based inference for max-stable processes
The last decade has seen max-stable processes emerge as a common tool for the
statistical modeling of spatial extremes. However, their application is
complicated due to the unavailability of the multivariate density function, and
so likelihood-based methods remain far from providing a complete and flexible
framework for inference. In this article we develop inferentially practical,
likelihood-based methods for fitting max-stable processes derived from a
composite-likelihood approach. The procedure is sufficiently reliable and
versatile to permit the simultaneous modeling of marginal and dependence
parameters in the spatial context at a moderate computational cost. The utility
of this methodology is examined via simulation, and illustrated by the analysis
of U.S. precipitation extremes
Consolidation de l'information hydrologique disponible localement et régionalement pour l'estimation probabiliste du régime des crues.
Le praticien, lors de l'étape de prédétermination des débits de crue, est souvent confronté à
un jeu de données restreint. Dans notre travail de recherche, nous avons proposé trois nouveaux
modèles probabilistes spécialement conçus pour l'estimation des caractéristiques du régime des
crues en contexte partiellement jaugé. Parmi ces modèles, deux d'entre eux sont des modèles dits
régionaux, i.e. intégrant de l'information en provenance de stations ayant un comportement réputé
similaire à celui du site étudié. Ces modèles, basés sur la théorie Bayésienne, ont montré une grande
robustesse au degré d'hétérogénéité des sites appartenant à la région. De même, il est apparu
que pour l'estimation des forts quantiles (T ≥ 50 ans), l'idée d'un paramètre régional contrôlant
l'extrapolation est pertinente mais doit d'être intégrée de manière souple et non imposée au sein de
la vraisemblance. L'information la plus précieuse dont le praticien dispose étant celle en provenance
du site d'étude, le troisième modèle proposé revient sur l'estimation à partir des seules données
contemporaines au site d'étude. Ce nouveau modèle utilise une information plus riche que celle
issue d'un échantillonnage classique de v. a. i. id. maximales puisque toute la chronique est exploitée.
Dès lors, même avec seulement cinq années d'enregistrement et grâce à une modélisation de la
dépendance entres les observations successives, la taille des échantillons exploités est alors bien plus
importante. Nous avons montré que pour l'estimation des quantiles de crues, ce modèle surpasse très
nettement les approches locales classiquement utilisées en hydrologie. Ce résultat est d'autant plus
vrai lorsque les périodes de retour deviennent importantes. Enfin, part construction, cette approche
permet également d'obtenir une estimation probabiliste de la dynamique des crues.
To define the design flood, practitioners must often deal with only few data available. The aim of
this work was to propose new classes of probabilistic models that are more accurate for this kind of
applications. In this perspective, we propose three different models: two regional approaches and
a fully local one. Unlike fully local models, the regional approaches include information from other
gauging stations. Our results show that the proposed regional Bayesian estimators are more robust
to the discordancy degree of the sites within the region. In addition, for larger quantile estimation
(T ≥ 50 years), the concept of a regional parameter which controls the tail behaviour seems to be
relevant. However, this concept has to be proposed and not imposed within the likelihood function.
It is overwhelmingly clear that the most important information one disposes is the target site one.
To this aim, we propose a third model that is fully local, i.e., which only uses the latest recorded
data. This new model is innovative as the whole time series is involved in the estimation procedure;
not only c1uster maxima. Consequently, even with only a five years record length time series, the
sample size becomes large. Our results show that, for flood quantile estimations, this model c1early
outperforms the estimators conventionally used in hydrology. Furthermore, by definition, this model
allows inferences on flood dynamics
ABC random forests for Bayesian parameter inference
This preprint has been reviewed and recommended by Peer Community In
Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100036).
Approximate Bayesian computation (ABC) has grown into a standard methodology
that manages Bayesian inference for models associated with intractable
likelihood functions. Most ABC implementations require the preliminary
selection of a vector of informative statistics summarizing raw data.
Furthermore, in almost all existing implementations, the tolerance level that
separates acceptance from rejection of simulated parameter values needs to be
calibrated. We propose to conduct likelihood-free Bayesian inferences about
parameters with no prior selection of the relevant components of the summary
statistics and bypassing the derivation of the associated tolerance level. The
approach relies on the random forest methodology of Breiman (2001) applied in a
(non parametric) regression setting. We advocate the derivation of a new random
forest for each component of the parameter vector of interest. When compared
with earlier ABC solutions, this method offers significant gains in terms of
robustness to the choice of the summary statistics, does not depend on any type
of tolerance level, and is a good trade-off in term of quality of point
estimator precision and credible interval estimations for a given computing
time. We illustrate the performance of our methodological proposal and compare
it with earlier ABC methods on a Normal toy example and a population genetics
example dealing with human population evolution. All methods designed here have
been incorporated in the R package abcrf (version 1.7) available on CRAN.Comment: Main text: 24 pages, 6 figures Supplementary Information: 14 pages, 5
figure
- …