421 research outputs found
Competitive Assessments for HAP Delivery of Mobile Services in Emerging Countries
In recent years, network deployment based on High Altitude Platforms (HAPs)
has gained momentum through several initiatives where air vehicles and
telecommunications payloads have been adapted and refined, resulting in more
efficient and less expensive platforms. In this paper, we study HAP as an
alternative or complementary fast-evolving technology to provide mobile
services in rural areas of emerging countries, where business models need to be
carefully tailored to the reality of their related markets. In these large
areas with low user density, mobile services uptake is likely to be slowed by a
service profitability which is in turn limited by a relatively low average
revenue per user. Through three architectures enabling different business roles
and using different terrestrial, HAP and satellite backhaul solutions, we
devise how to use in an efficient and profitable fashion these multi-purpose
aerial platforms, in complement to existing access and backhauling satellite or
terrestrial technologies
The two-sample problem for Poisson processes: adaptive tests with a non-asymptotic wild bootstrap approach
Considering two independent Poisson processes, we address the question of
testing equality of their respective intensities. We first propose single tests
whose test statistics are U-statistics based on general kernel functions. The
corresponding critical values are constructed from a non-asymptotic wild
bootstrap approach, leading to level \alpha tests. Various choices for the
kernel functions are possible, including projection, approximation or
reproducing kernels. In this last case, we obtain a parametric rate of testing
for a weak metric defined in the RKHS associated with the considered
reproducing kernel. Then we introduce, in the other cases, an aggregation
procedure, which allows us to import ideas coming from model selection,
thresholding and/or approximation kernels adaptive estimation. The resulting
multiple tests are proved to be of level \alpha, and to satisfy non-asymptotic
oracle type conditions for the classical L2-norm. From these conditions, we
deduce that they are adaptive in the minimax sense over a large variety of
classes of alternatives based on classical and weak Besov bodies in the
univariate case, but also Sobolev and anisotropic Nikol'skii-Besov balls in the
multivariate case
Enabling Disaster Resilient 4G Mobile Communication Networks
The 4G Long Term Evolution (LTE) is the cellular technology expected to
outperform the previous generations and to some extent revolutionize the
experience of the users by taking advantage of the most advanced radio access
techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies
between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core
(EPC) limit the flexibility, manageability and resiliency in such networks. In
case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are
in fact unable to communicate. In this article, we reshape the 4G mobile
network to move towards more virtual and distributed architectures for
improving disaster resilience, drastically reducing the dependency between UEs,
eNBs and EPC. The contribution of this work is twofold. We firstly present the
Flexible Management Entity (FME), a distributed entity which leverages on
virtualized EPC functionalities in 4G cellular systems. Second, we introduce a
simple and novel device-todevice (D2D) communication scheme allowing the UEs in
physical proximity to communicate directly without resorting to the
coordination with an eNB.Comment: Submitted to IEEE Communications Magazin
Decorated proofs for computational effects: Exceptions
We define a proof system for exceptions which is close to the syntax for
exceptions, in the sense that the exceptions do not appear explicitly in the
type of any expression. This proof system is sound with respect to the intended
denotational semantics of exceptions. With this inference system we prove
several properties of exceptions.Comment: 11 page
States and exceptions considered as dual effects
In this paper we consider the two major computational effects of states and
exceptions, from the point of view of diagrammatic logics. We get a surprising
result: there exists a symmetry between these two effects, based on the
well-known categorical duality between products and coproducts. More precisely,
the lookup and update operations for states are respectively dual to the throw
and catch operations for exceptions. This symmetry is deeply hidden in the
programming languages; in order to unveil it, we start from the monoidal
equational logic and we add progressively the logical features which are
necessary for dealing with either effect. This approach gives rise to a new
point of view on states and exceptions, which bypasses the problems due to the
non-algebraicity of handling exceptions
A duality between exceptions and states
In this short note we study the semantics of two basic computational effects,
exceptions and states, from a new point of view. In the handling of exceptions
we dissociate the control from the elementary operation which recovers from the
exception. In this way it becomes apparent that there is a duality, in the
categorical sense, between exceptions and states
Adjunctions for exceptions
An algebraic method is used to study the semantics of exceptions in computer
languages. The exceptions form a computational effect, in the sense that there
is an apparent mismatch between the syntax of exceptions and their intended
semantics. We solve this apparent contradiction by efining a logic for
exceptions with a proof system which is close to their syntax and where their
intended semantics can be seen as a model. This requires a robust framework for
logics and their morphisms, which is provided by categorical tools relying on
adjunctions, fractions and limit sketches.Comment: In this Version 2, minor improvements are made to Version
- …