1,015 research outputs found

    Luminosity function of faint Galactic sources in the Chandra bulge field

    Full text link
    We study the statistical properties of faint X-ray sources detected in the Chandra Bulge Field. The unprecedented sensitivity of the Chandra observations allows us to probe the population of faint Galactic X-ray sources down to luminosities L(2-10 keV)~1e30 erg/sec at the Galactic Center distance. We show that the luminosity function of these CBF sources agrees well with the luminosity function of sources in the Solar vicinity (Sazonov et al. 2006). The cumulative luminosity density of sources detected in the CBF in the luminosity range 1e30-1e32 erg/sec per unit stellar mass is L(2-10 keV)/M*=(1.7+/-0.3)e27 erg/sec/Msun. Taking into account sources in the luminosity range 1e32-1e34 erg/sec from Sazonov et al. (2006), the cumulative luminosity density in the broad luminosity range 1e30-1e34 erg/sec becomes L(2-10 keV)/M*=(2.4+/-0.4)e27 erg/sec/Msun. The majority of sources with the faintest luminosities should be active binary stars with hot coronae based on the available luminosity function of X-ray sources in the Solar environment.Comment: 5 pages, 4 figures, Accepted for publication in MNRA

    INTEGRAL observations of five sources in the Galactic Center region

    Full text link
    A number of new X-ray sources (IGR J17091-3624, IGR/XTE J17391-3021, IGR J17464-3213 (= XTE J17464-3213 = H 1743-322), IGR J17597-2201, SAX/IGR J18027-2017) have been observed with the INTEGRAL observatory during ultra deep exposure of the Galactic Center region in August-September 2003. Most of them were permanently visible by the INTEGRAL at energies higher than ∼20\sim 20 keV, but IGR/XTE J17391-3021 was observed only during its flaring activity with a flux maximum of ∼120\sim120 mCrab. IGR J17091-3624, IGR J17464-3213 and IGR J17597-2201 were detected up to ∼100\sim 100-150 keV. In this paper we present the analysis of INTEGRAL observations of these sources to determine the nature of these objects. We conclude that all of them have a galactic origin. Two sources are black hole candidates (IGR J17091-3624 and IGR J17464-3213), one is an LMXB neutron star binary (presumably an X-ray burster) and two other sources (IGR J17597-2201 and SAX/IGR J18027-2017) are neutron stars in high mass binaries; one of them (SAX/IGR J18027-2017) is an accreting X-ray pulsar.Comment: 8 pages, 7 figures, 2 tables, accepted for publication in A&

    Measurements of the Cosmic X-ray Background of the Universe and the MVN Experiment

    Full text link
    The paper describes previous studies of the cosmic X-ray background (CXB) of the Universe in the energy range 1-100 keV and outline prospects for its investigation with the help of MVN (Monitor Vsego Neba) experiment. The nature of the CXB and its use for studying the cosmological evolution of black holes are briefly discussed. The bulk of the paper is devoted to the methods of CXB measurements, from the first pioneering rocket and balloon-borne experiments to the measurements made with latest-generation orbital X-ray observatories. Particular attention is given to the problems of allowance for the contribution of background events to the measurements with X-ray and hard X-ray instruments.Comment: 20 pages, 17 figures, Published in Astronomy Letter

    Boundary layer emission in luminous LMXBs

    Full text link
    We show that aperiodic and quasiperiodic variability of bright LMXBs - atoll and Z- sources, on ~sec - msec time scales is caused primarily by variations of the boundary layer luminosity. The accretion disk emission is less variable on these time scales and its power density follows 1/f law, contributing to observed flux variation at low frequencies and low energies only. The kHz QPOs have the same origin as variability at lower frequencies - independent of the nature of the "clock", the actual luminosity modulation takes place on the NS surface. The boundary layer spectrum remains nearly constant during luminosity variations and can be represented by the Fourier frequency resolved spectrum. In the range of Mdot~(0.1-1)*Mdot_Edd it depends weakly on the global mass accretion rate and in the limit Mdot~Mdot_Edd is close to Wien spectrum with kT~2.4 keV. Its independence on the Mdot lends support to the suggestion by Inogamov & Sunyaev (1999) that the boundary layer is radiation pressure supported. Based on the knowledge of the boundary layer spectrum we attempt to relate the motion along the Z-track to changes of physically meaningful parameters. Our results suggest that the contribution of the boundary layer to the observed emission decreases along the Z-track from conventional ~50% on the horizontal branch to a rather small number on the normal branch. This decrease can be caused, for example, by obscuration of the boundary layer by the geometrically thickened accretion disk at Mdot~Mdot_Edd. Alternatively, this can indicate significant change of the structure of the accretion flow at Mdot~Mdot_Edd and disappearance of the boundary layer as a distinct region of the significant energy release associated with the NS surface.Comment: Astronomische Nachrichten, 326, No.9, p.812 (2005

    Magnetic fields of neutron stars in X-ray binaries

    Get PDF
    A substantial fraction of the known neutron stars resides in X-ray binaries -- systems in which one compact object accretes matter from a companion star. Neutron stars in X-ray binaries have magnetic fields among the highest found in the Universe, spanning at least the range from ∼108\sim10^8 to several 1013^{13} G. The magnetospheres around these neutron stars have a strong influence on the accretion process, which powers most of their emission. The magnetic field intensity and geometry, are among the main factors responsible for the large variety of spectral and timing properties observed in the X-ray energy range, making these objects unique laboratories to study the matter behavior and the radiation processes in magnetic fields unaccessible on Earth. In this paper we review the main observational aspects related to the presence of magnetic fields in neutron star X-ray binaries and some methods that are used to estimate their strength.Comment: 16 pages, 9 figures, invited topical review, to be published in The Strongest Magnetic Fields in the Universe (Space Sciences Series of ISSI, Springer), Space Science Reviews, accepte

    X-raying Galaxies: A Chandra Legacy

    Get PDF
    This presentation reviews Chandra's major contribution to the understanding of nearby galaxies. After a brief summary on significant advances in characterizing various types of discrete X-ray sources, the presentation focuses on the global hot gas in and around galaxies, especially normal ones like our own. The hot gas is a product of stellar and AGN feedback -- the least understood part in theories of galaxy formation and evolution. Chandra observations have led to the first characterization of the spatial, thermal, chemical, and kinetic properties of the gas in our Galaxy. The gas is concentrated around the Galactic bulge and disk on scales of a few kpc. The column density of chemically-enriched hot gas on larger scales is at least an order magnitude smaller, indicating that it may not account for the bulk of the missing baryon matter predicted for the Galactic halo according to the standard cosmology. Similar results have also been obtained for other nearby galaxies. The X-ray emission from hot gas is well correlated with the star formation rate and stellar mass, indicating that the heating is primarily due to the stellar feedback. However, the observed X-ray luminosity of the gas is typically less than a few percent of the feedback energy. Thus the bulk of the feedback (including injected heavy elements) is likely lost in galaxy-wide outflows. The results are compared with simulations of the feedback to infer its dynamics and interplay with the circum-galactic medium, hence the evolution of galaxies.Comment: Refereed review article to be published in Proceedings of the National Academy of Science

    Short term aperiodic variability of X-ray binaries: its origin and implications

    Get PDF
    In this review I briefly describe the latest advances in studies of aperiodic variability of accreting X-ray binaries and outline the model which currently describe the majority of observational appearances of variability of accreting sources in the best way. Then I concentrate on the case of luminous accreting neutron star binaries (in the soft/high spectral state), where study of variability of X-ray emission of sources allowed us to resolve long standing problem of disentangling the contribution of accretion disk and boundary/spreading layer components to the time average spectrum of sources. The obtained knowledge of the shape of the spectrum of the boundary layer allowed us to make estimates of the mass and radii of accreting neutron stars.Comment: 11 pages, 5 figures. Proceedings article of the conference "Cool Discs, Hot Flows: The Varying Faces of Accreting Compact Objects", Ed. M. Axelsson, AIP Conference Proceedings 105
    • …
    corecore