2,878 research outputs found

    Selective foraging behavior of seabirds in small-scale slicks

    Get PDF
    Lieber L, Füchtencordsjürgen C, Hilder RL, et al. Selective foraging behavior of seabirds in small-scale slicks. Limnology and Oceanography Letters . 2022.Marine predator foraging opportunities are often driven by dynamic physical processes enhancing prey accessibility. Surface slicks are ubiquitous yet ephemeral ocean features where convergent flows accumulate flotsam, concentrating marine organisms and pollutants. Slicks can manifest on the sea surface as meandering lines and seabirds often associate with slicks. Yet, how slicks may influence the fine-scale foraging behavior of seabirds is only coarsely resolved. Here we show that seabirds selectively forage in small-scale slicks. We used aerial drone technology to track surface-foraging terns (Sternidae, 107 tracks) over evolving slicks advected by the mean flow and reshaped by localized turbulence at scales of meters and seconds. Terns were more likely to switch into high-tortuosity foraging behavior when over slicks, with plunge-dive events occurring significantly more often within slicks. As we demonstrate that terns select dynamic slicks for foraging, our approach will also lend itself to interaction studies with pollutants, plumes, and fronts

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS

    Search for resonances in events with photon and jet final states in proton-proton collisions at s = 13 TeV

    Get PDF
    A search for resonances in events with the γ+jet final state has been performed using proton-proton collision data collected at s = 13 TeV by the CMS experiment at the LHC. The total data analyzed correspond to an integrated luminosity of 138 fb−1. Models of excited quarks and quantum black holes are considered. Using a wide-jet reconstruction for the candidate jet, the γ+jet invariant mass spectrum measured in data is examined for the presence of resonances over the standard model continuum background. The background is estimated by fitting this mass distribution with a functional form. The data exhibit no statistically significant deviations from the expected standard model background. Exclusion limits at 95% confidence level on the resonance mass and other parameters are set. Excited light-flavor quarks (excited bottom quarks) are excluded up to a mass of 6.0 (3.8) TeV. Quantum black hole production is excluded for masses up to 7.5 (5.2) TeV in the Arkani-Hamed-Dimopoulos-Dvali (Randall-Sundrum) model. These lower mass bounds are the most stringent to date among those obtained in the γ+jet final state

    Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV

    Get PDF
    The fiducial cross section for Y(1S) pair production in proton-proton collisions at a center-of-mass energy of 13 TeV in the region where both Y(1S) mesons have an absolute rapidity below 2.0 is measured to be 79±11(stat)±6(syst)±3(B) pb assuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the Y(1S) meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9fb⁻¹. This process serves as a standard model reference in a search for narrow resonances decaying to Y(1S)μ⁺μ⁻ in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two b quarks and two b antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5 GeV, while a generic search for other resonances is performed for masses between 16.5 and 27 GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate Y(1S) resonance are set as a function of the resonance mass

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d_t) and chromomagnetic (μ_t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb⁻¹. The linearized variable A^((1))_(FB) is used to approximate the asymmetry. Candidate tt̄ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for tt̄ final states. The values found for the parameters are A^((1))_(FB) = 0.048^(+0.095)_(−0.087)(stat)^(+0.020)_(−0.029)(syst), μ_t = −0.024^(+0.013)_(−0.009)(stat)^(+0.016)_(−0.011)(syst), and a limit is placed on the magnitude of |d_t| < 0.03 at 95% confidence level

    Measurement of the cross section for t(t)over-bar production with additional jets and b jets in pp collisions at root s=13TeV

    Get PDF
    Measurements of the cross section for the production of top quark pairs in association with a pair of jets from bottom quarks (sigma(t (t) over barb (b) over bar)) and in association with a pair of jets from quarks of any flavor or gluons (sigma(t (t) over bar jj)) and their ratio are presented. The data were collected in proton-proton collisions at a center-of-mass energy of 13 TeV by the CMS experiment at the LHC in 2016 and correspond to an integrated luminosity of 35.9 fb(-1). The measurements are performed in a fiducial phase space and extrapolated to the full phase space, separately for the dilepton and lepton+jets channels, where lepton corresponds to either an electron or a muon. The results of the measurements in the fiducial phase space for the dilepton and lepton+jets channels, respectively, are sigma(t (t) over bar jj) = 2.36 +/- 0.02 (stat)+/- 0.20 (syst) pb and 31.0 +/- 0.2 (stat)+/- 2.9 (syst) pb, and for the cross section ratio 0.017 +/- 0.001 (stat)+/- 0.001 (syst) and 0.020 +/- 0.001 (stat)+/- 0.001 (syst). The values of sigma(t (t) over barb (b) over bar) are determined from the product of the sigma(t (t) over bar jj) and the cross section ratio, obtaining, respectively, 0.040 +/- 0.002 (stat)+/- 0.005 (syst) pb and 0.62 +/- 0.03 (stat)+/- 0.07 (syst) pb. These measurements are the most precise to date and are consistent, within the uncertainties, with the standard model expectations obtained using a matrix element calculation at next-to-leading order in quantum chromodynamics matched to a parton shower.Peer reviewe
    corecore