161 research outputs found

    A new calculation of atmospheric neutrino flux: the FLUKA approach.

    Get PDF
    Abstract Preliminary results from a full 3-D calculation of atmospheric neutrino fluxes using the FLUKA interaction model are presented and compared to previous existing calculations. This effort is motivated mainly by the 3-D capability and the satisfactory degree of accuracy of the hadron-nucleus models embedded in the FLUKA code. Here we show examples of benchmarking tests of the model with cosmic ray experiment results. A comparison of our calculation of the atmospheric neutrino flux with that of the Bartol group, for E ν > 1 GeV, is presented

    A Flexible and Efficient Approach to Missing Transverse Momentum Reconstruction

    Get PDF
    The article processing charge was funded by the Open Access Publication Fund of Humboldt-Universität zu Berlin.Missing transverse momentum is a crucial observable for physics at hadron colliders, being the only constraint on the kinematics of “invisible” objects such as neutrinos and hypothetical dark matter particles. Computing missing transverse momentum at the highest possible precision, particularly in experiments at the energy frontier, can be a challenging procedure due to ambiguities in the distribution of energy and momentum between many reconstructed particle candidates. This paper describes a novel solution for efficiently encoding information required for the computation of missing transverse momentum given arbitrary selection criteria for the constituent reconstructed objects. Pileup suppression using information from both the calorimeter and the inner detector is an integral component of the reconstruction procedure. Energy calibration and systematic variations are naturally supported. Following this strategy, the ATLAS Collaboration has been able to optimise the use of missing transverse momentum in diverse analyses throughout Runs 2 and 3 of the Large Hadron Collider and for future analyses.Peer Reviewe

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Report from Working Group 3: Beyond the standard model physics at the HL-LHC and HE-LHC

    Get PDF
    This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as 33 ab1^{-1} of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as 1515 ab1^{-1} of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by 2050%20-50\% on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics

    A new simulation framework for IceCube Upgrade calibration using IceCube Upgrade Camera system

    Get PDF
    Currently, an upgrade consisting of seven densely instrumented strings in the center of the volume of the IceCube detector with new digital optical modules (DOMs) is being built. On each string, DOMs will be regularly spaced with a vertical separation of 3 m between depths of 2160 m and 2430 m below the surface of the ice, which is a denser configuration compared to the existing DOMs of IceCube detector. For a precise calibration of the IceCube Upgrade it is important to understand the properties of the ice, both inside and surrounding the deployment holes.LEDs and Camera systems, which are developed and produced at Sungkyunkwan university, are installed in every single DOM to measure these properties. For these calibration measurements, a new simulation framework, which produces expected images from various geometric and optical variables has been developed and images produced from the simulation are expected to be used to develop an analysis framework for the IceCube Upgrade camera calibration system and for the design of the IceCube Gen2 camera system

    Highlights from the IceCube Neutrino Observatory

    Get PDF
    As IceCube surpasses a decade of operation in the full detector configuration, results that drive forward the fields of neutrino astronomy, cosmic ray physics, multi-messenger astronomy, particle physics, and beyond continue to emerge at an accelerated pace. IceCube data is dominated by background events, and thus teasing out the signal is the common challenge to most analyses. Statistical accumulation of data, along with better understanding of the background fluxes, the detector, and continued development of our analysis tools have produced many profound results that were presented at ICRC2023. Highlights covered here include the first neutrino observation of the Galactic Plane, the first observation of a steady emission neutrino point source NGC1068, new characterizations of the cosmic ray flux and its secondary particles, and a possible new era in measuring the energy spectrum of the diffuse astrophysical flux. IceCube is poised to make more discoveries and drive fields forward in the near future with many novel analyses coming online

    Search for the rare interactions of neutrinos from distant point sources with the IceCube Neutrino Telescope

    Get PDF
    The recent discovery and evidence of neutrino signals from distant sources, TXS 0506+056 and NGC 1068 respectively, provide opportunities to search for rare interactions of neutrinos that they might encounter on their paths. One potential scenario of interest is the interaction between neutrinos and dark matter, which is invisible and expected to be abundantly spread over the Universe. Various astrophysical observations have implied the existence of dark matter. When high-energy neutrinos from extragalactic sources interact with dark matter during their propagation, their spectra might show suppressions at specific energy ranges, where such interactions occur. These attenuation signatures from the interaction might be measurable on Earth with large neutrino telescopes such as the IceCube Neutrino Observatory. This analysis is focused on the search for rare interactions of high-energy neutrinos from the IceCube-identified astrophysical neutrino sources with dark matter in sub-GeV masses and several benchmark mediator cases using the upgoing track-like events. In this poster, sensitivity studies about the interaction of neutrinos and dark matter are presented

    Three-year performance of the IceAct telescopes at the IceCube Neutrino Observatory

    Get PDF
    IceAct is an array of compact Imaging Air Cherenkov Telescopes at the ice surface as part of the IceCube Neutrino Observatory. The telescopes, featuring a camera of 61 silicon photomultipliers and fresnel-lens-based optics, are optimized to be operated in harsh environmental conditions, such as at the South Pole. Since 2019, the first two telescopes have been operating in a stereoscopic configuration in the center of IceCube\u27s surface detector IceTop. With an energy threshold of about 10 TeV and a wide field-of-view, the IceAct telescopes show promising capabilities of improving current cosmic-ray composition studies: measuring the Cherenkov light emissions in the atmosphere adds new information about the shower development not accessible with the current detectors. First simulations indicate that the added information of a single telescope leads, e.g., to an improved discrimination between flux contributions from different primary particle species in the sensitive energy range. We review the performance and detector operations of the telescopes during the past 3 years (2020-2022) and give an outlook on the future of IceAct

    A multi-detector EAS reconstruction framework for IceCube

    Get PDF

    Design and Performance of the mDOM Mainboard for the IceCube Upgrade

    Get PDF
    About 400 mDOMs (multi-PMT Digital Optical Modules) will be deployed as part of the IceCube Upgrade Project. The mDOM’s high pressure-resistant glass sphere houses 24 PMTs, 3 cameras, 10 flasher LEDs and various sensors. The mDOM mainboard design was challenging due to the limited available volume and demanding engineering requirements, like the maximum overall power consumption, a minimum trigger threshold of 0.2 photoelectrons (PE), the dynamic range and the linearity requirements. Another challenge was the FPGA firmware design, dealing with about 35 Gbit/s of continuous ADC data from the digitization of the 24 PMT channels, the control of a high speed dynamic buffer and the discriminator output sampling rate of about 1GSPS. High-speed sampling of each of the discriminator outputs at ~1 GSPS improves the leading-edge time resolution for the PMT waveforms. An MCU (microcontroller unit) coordinates the data taking, the data exchange with the surface and the sensor readout. Both the FPGA firmware and MCU software can be updated remotely. After discussing the main hardware blocks and the analog frontend (AFE) design, test results will be shown, covering especially the AFE performance. Additionally, the functionality of various sensors and modules will be evaluated
    corecore