77 research outputs found
Greening Multi-Tenant Data Center Demand Response
Data centers have emerged as promising resources for demand response,
particularly for emergency demand response (EDR), which saves the power grid
from incurring blackouts during emergency situations. However, currently, data
centers typically participate in EDR by turning on backup (diesel) generators,
which is both expensive and environmentally unfriendly. In this paper, we focus
on "greening" demand response in multi-tenant data centers, i.e., colocation
data centers, by designing a pricing mechanism through which the data center
operator can efficiently extract load reductions from tenants during emergency
periods to fulfill energy reduction requirement for EDR. In particular, we
propose a pricing mechanism for both mandatory and voluntary EDR programs,
ColoEDR, that is based on parameterized supply function bidding and provides
provably near-optimal efficiency guarantees, both when tenants are price-taking
and when they are price-anticipating. In addition to analytic results, we
extend the literature on supply function mechanism design, and evaluate ColoEDR
using trace-based simulation studies. These validate the efficiency analysis
and conclude that the pricing mechanism is both beneficial to the environment
and to the data center operator (by decreasing the need for backup diesel
generation), while also aiding tenants (by providing payments for load
reductions).Comment: 34 pages, 6 figure
Online Learning for Offloading and Autoscaling in Energy Harvesting Mobile Edge Computing
Mobile edge computing (a.k.a. fog computing) has recently emerged to enable
in-situ processing of delay-sensitive applications at the edge of mobile
networks. Providing grid power supply in support of mobile edge computing,
however, is costly and even infeasible (in certain rugged or under-developed
areas), thus mandating on-site renewable energy as a major or even sole power
supply in increasingly many scenarios. Nonetheless, the high intermittency and
unpredictability of renewable energy make it very challenging to deliver a high
quality of service to users in energy harvesting mobile edge computing systems.
In this paper, we address the challenge of incorporating renewables into mobile
edge computing and propose an efficient reinforcement learning-based resource
management algorithm, which learns on-the-fly the optimal policy of dynamic
workload offloading (to the centralized cloud) and edge server provisioning to
minimize the long-term system cost (including both service delay and
operational cost). Our online learning algorithm uses a decomposition of the
(offline) value iteration and (online) reinforcement learning, thus achieving a
significant improvement of learning rate and run-time performance when compared
to standard reinforcement learning algorithms such as Q-learning. We prove the
convergence of the proposed algorithm and analytically show that the learned
policy has a simple monotone structure amenable to practical implementation.
Our simulation results validate the efficacy of our algorithm, which
significantly improves the edge computing performance compared to fixed or
myopic optimization schemes and conventional reinforcement learning algorithms.Comment: arXiv admin note: text overlap with arXiv:1701.01090 by other author
Spatio-temporal Edge Service Placement: A Bandit Learning Approach
Shared edge computing platforms deployed at the radio access network are
expected to significantly improve quality of service delivered by Application
Service Providers (ASPs) in a flexible and economic way. However, placing edge
service in every possible edge site by an ASP is practically infeasible due to
the ASP's prohibitive budget requirement. In this paper, we investigate the
edge service placement problem of an ASP under a limited budget, where the ASP
dynamically rents computing/storage resources in edge sites to host its
applications in close proximity to end users. Since the benefit of placing edge
service in a specific site is usually unknown to the ASP a priori, optimal
placement decisions must be made while learning this benefit. We pose this
problem as a novel combinatorial contextual bandit learning problem. It is
"combinatorial" because only a limited number of edge sites can be rented to
provide the edge service given the ASP's budget. It is "contextual" because we
utilize user context information to enable finer-grained learning and decision
making. To solve this problem and optimize the edge computing performance, we
propose SEEN, a Spatial-temporal Edge sErvice placemeNt algorithm. Furthermore,
SEEN is extended to scenarios with overlapping service coverage by
incorporating a disjunctively constrained knapsack problem. In both cases, we
prove that our algorithm achieves a sublinear regret bound when it is compared
to an oracle algorithm that knows the exact benefit information. Simulations
are carried out on a real-world dataset, whose results show that SEEN
significantly outperforms benchmark solutions
Robust Bandit Learning with Imperfect Context
A standard assumption in contextual multi-arm bandit is that the true context
is perfectly known before arm selection. Nonetheless, in many practical
applications (e.g., cloud resource management), prior to arm selection, the
context information can only be acquired by prediction subject to errors or
adversarial modification. In this paper, we study a contextual bandit setting
in which only imperfect context is available for arm selection while the true
context is revealed at the end of each round. We propose two robust arm
selection algorithms: MaxMinUCB (Maximize Minimum UCB) which maximizes the
worst-case reward, and MinWD (Minimize Worst-case Degradation) which minimizes
the worst-case regret. Importantly, we analyze the robustness of MaxMinUCB and
MinWD by deriving both regret and reward bounds compared to an oracle that
knows the true context. Our results show that as time goes on, MaxMinUCB and
MinWD both perform as asymptotically well as their optimal counterparts that
know the reward function. Finally, we apply MaxMinUCB and MinWD to online edge
datacenter selection, and run synthetic simulations to validate our theoretical
analysis
Learning for Edge-Weighted Online Bipartite Matching with Robustness Guarantees
Many problems, such as online ad display, can be formulated as online
bipartite matching. The crucial challenge lies in the nature of
sequentially-revealed online item information, based on which we make
irreversible matching decisions at each step. While numerous expert online
algorithms have been proposed with bounded worst-case competitive ratios, they
may not offer satisfactory performance in average cases. On the other hand,
reinforcement learning (RL) has been applied to improve the average
performance, but it lacks robustness and can perform arbitrarily poorly. In
this paper, we propose a novel RL-based approach to edge-weighted online
bipartite matching with robustness guarantees (LOMAR), achieving both good
average-case and worst-case performance. The key novelty of LOMAR is a new
online switching operation which, based on a judicious condition to hedge
against future uncertainties, decides whether to follow the expert's decision
or the RL decision for each online item. We prove that for any ,
LOMAR is -competitive against any given expert online algorithm. To
improve the average performance, we train the RL policy by explicitly
considering the online switching operation. Finally, we run empirical
experiments to demonstrate the advantages of LOMAR compared to existing
baselines. Our code is available at: https://github.com/Ren-Research/LOMARComment: Accepted by ICML 202
Extending Demand Response to Tenants in Cloud Data Centers via Non-intrusive Workload Flexibility Pricing
Participating in demand response programs is a promising tool for reducing
energy costs in data centers by modulating energy consumption. Towards this
end, data centers can employ a rich set of resource management knobs, such as
workload shifting and dynamic server provisioning. Nonetheless, these knobs may
not be readily available in a cloud data center (CDC) that serves cloud
tenants/users, because workloads in CDCs are managed by tenants themselves who
are typically charged based on a usage-based or flat-rate pricing and often
have no incentive to cooperate with the CDC operator for demand response and
cost saving. Towards breaking such "split incentive" hurdle, a few recent
studies have tried market-based mechanisms, such as dynamic pricing, inside
CDCs. However, such mechanisms often rely on complex designs that are hard to
implement and difficult to cope with by tenants. To address this limitation, we
propose a novel incentive mechanism that is not dynamic, i.e., it keeps pricing
for cloud resources unchanged for a long period. While it charges tenants based
on a Usage-based Pricing (UP) as used by today's major cloud operators, it
rewards tenants proportionally based on the time length that tenants set as
deadlines for completing their workloads. This new mechanism is called
Usage-based Pricing with Monetary Reward (UPMR). We demonstrate the
effectiveness of UPMR both analytically and empirically. We show that UPMR can
reduce the CDC operator's energy cost by 12.9% while increasing its profit by
4.9%, compared to the state-of-the-art approaches used by today's CDC operators
to charge their tenants
- …