19 research outputs found

    Shape Approaches for Enhancing Plasmon Propagation in Graphene

    Get PDF
    Graphene plasmonics is a promising alternative for on-chip high speed communication that integrates optics and electronics, where the strong confinement of the electromagnetic energy at subwavelength scale and the tunability of the plasmon frequency via an external gate voltage are key advantages. The main drawback of graphene plasmons is their rather short decay and propagation length, which is due to intrinsic losses and substrate-related defects. Toward plasmonic devices, noble metal antennas represent a viable approach for plasmon launching in graphene waveguides, with the challenge of efficient coupling and plasmon propagation that are feasible for on chip communication. Here we discuss and analyze, using numerical simulations, different designs of metal antennas and their coupling to graphene plasmons (GP), as well as graphene based nanopatterned waveguides that can lead to a more efficient GP propagation. A Yagi-Uda antenna leads to stronger coupling to GPs and allows for directive propagation as compared to a simple dipole antenna. This is especially advantageous to launch plasmons in graphene nanowire waveguides, where propagation up to 3 μm and frequency and phase control can be achieved. In tapered graphene waveguides, the constructive interference of the plasmon reflection at the edges can lead to strong plasmon signals up to 8 μm distant from the launching dipole antenna. Nanostructuring of rectangular waveguides into asymmetric chains of truncated triangles greatly enhances directionality of GP propagation and conserves phase information. A comparison of the propagation length and electric near-field strength of these different approaches is presented, and confronted with the efficiency of GP launching by light scattering on scanning near field optical microscopy (SNOM) tips

    Hybridization in Three Dimensions: A Novel Route toward Plasmonic Metamolecules

    No full text
    Plasmonic metamolecules have received much interest in the last years because they can produce a wide spectrum of different hybrid optical resonances. Most of the configurations presented so far, however, considered planar resonators lying on a dielectric substrate. This typically yields high damping and radiative losses, which severely limit the performance of the system. Here we show that these limits can be overcome by considering a 3D arrangement made from slanted nanorod dimers extruding from a silver baseplate. This configuration mimics an out-of-plane split ring resonator capable of a strong near-field interaction at the terminations and a strong diffractive coupling with nearby nanostructures. Compared to the corresponding planar counterparts, higher values of electric and magnetic fields are found (about a factor 10 and a factor 3, respectively). High-quality-factor resonances (<i>Q</i> ≈ 390) are produced in the mid-IR as a result of the efficient excitation of collective modes in dimer arrays

    Hybridization in Three Dimensions: A Novel Route toward Plasmonic Metamolecules

    No full text
    Plasmonic metamolecules have received much interest in the last years because they can produce a wide spectrum of different hybrid optical resonances. Most of the configurations presented so far, however, considered planar resonators lying on a dielectric substrate. This typically yields high damping and radiative losses, which severely limit the performance of the system. Here we show that these limits can be overcome by considering a 3D arrangement made from slanted nanorod dimers extruding from a silver baseplate. This configuration mimics an out-of-plane split ring resonator capable of a strong near-field interaction at the terminations and a strong diffractive coupling with nearby nanostructures. Compared to the corresponding planar counterparts, higher values of electric and magnetic fields are found (about a factor 10 and a factor 3, respectively). High-quality-factor resonances (<i>Q</i> ≈ 390) are produced in the mid-IR as a result of the efficient excitation of collective modes in dimer arrays

    All-optical Reconfiguration of Ultrafast Dichroism in Gold Metasurfaces

    No full text
    Optical metasurfaces have come into the spotlight as a promising platform for light manipulation at the nanoscale, including ultrafast all-optical control via excitation with femtosecond laser pulses. Recently, dichroic metasurfaces have been exploited to modulate the polarization state of light with unprecedented speed. Here, we theoretically predict and experimentally demonstrate by pump-probe spectroscopy the capability to reconfigure the ultrafast dichroic signal of a gold metasurface by simply acting on the polarization of the pump pulse, which is shown to reshape the spatio-temporal distribution of the optical perturbation. The photoinduced anisotropic response, driven by out-of-equilibrium carriers and extinguished in a sub-picosecond temporal window, is readily controlled in intensity by tuning the polarization direction of the excitation up to a full sign reversal. This work proves that nonlinear metasurfaces offer the flexibility to tailor their ultrafast optical response in a fully all-optically reconfigurable platform

    Photoinduced Temperature Gradients in Sub-wavelength Plasmonic Structures: The Thermoplasmonics of Nanocones

    No full text
    Plasmonic structures are renowned for their capability to efficiently convert light into heat at the nanoscale. However, despite the possibility to generate deep sub-wavelength electromagnetic hot spots, the formation of extremely localized thermal hot spots is an open challenge of research, simply because of the diffusive spread of heat along the whole metallic nanostructure. Here we tackle this challenge by exploiting single gold nanocones. We theoretically show how these structures can indeed realize extremely high temperature gradients within the metal, leading to deep sub-wavelength thermal hot spots, owing to their capability of concentrating light at the apex under resonant conditions even under continuous wave illumination. A three-dimensional Finite Element Method model is employed to study the electromagnetic field in the structure and subsequent thermoplasmonic behaviour, in terms of the three-dimensional temperature distribution. We show how the latter is affected by nanocone size, shape, and composition of the surrounding environment. Finally, we anticipate the use of photoinduced temperature gradients in nanocones for applications in optofluidics and thermoelectrics or for thermally induced nanofabrication

    Insight on the Failure Mechanism of Sn Electrodes for Sodium-Ion Batteries: Evidence of Pore Formation during Sodiation and Crack Formation during Desodiation

    No full text
    The development of Sn based anode materials for sodium ion batteries is mainly hindered by the limited understanding of sodiation/desodiation mechanisms inside the active material, which typically results in electrode damage. Herein, we report a post-mortem ex-situ scanning electron microscopic analysis of Sn thin film motivated by the intention to elucidate these structural mechanisms. Our results reveal for the first time that the surface of Sn electrode film becomes highly porous during sodiation with no presence of obvious cracks, a surprising result when compared to previous reports performed on Sn particles. Even more surprisingly, sequential ex-situ SEM observations demonstrate that, once the desodiation starts and reaches the second desodiation plateau (0.28 V), obvious cracks in the Sn film are instead observed along with porous islands of active material. These islands appear as aggregated particles which further split into smaller islands when the desodiation potential reaches its maximum value (2.0 V). Finally, for the first time, the experimental value of the sodium diffusion coefficient inside Sn was measured (3.9 × 10–14 cm2 s–1) using electrochemical impedance spectroscopy

    3D Hollow Nanostructures as Building Blocks for Multifunctional Plasmonics

    No full text
    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications
    corecore