1,160 research outputs found
Experimental development of processes to produce homogenized alloys of immiscible metals, phase 3
An experimental drop tower package was designed and built for use in a drop tower. This effort consisted of a thermal analysis, container/heater fabrication, and assembly of an expulsion device for rapid quenching of heated specimens during low gravity conditions. Six gallium bismuth specimens with compositions in the immiscibility region (50 a/o of each element) were processed in the experimental package: four during low gravity conditions and two under a one gravity environment. One of the one gravity processed specimens did not have telemetry data and was subsequently deleted for analysis since the processing conditions were not known. Metallurgical, Hall effect, resistivity, and superconductivity examinations were performed on the five specimens. Examination of the specimens showed that the gallium was dispersed in the bismuth. The low gravity processed specimens showed a relatively uniform distribution of gallium, with particle sizes of 1 micrometer or less, in contrast to the one gravity control specimen. Comparison of the cooling rates of the dropped specimens versus microstructure indicated that low cooling rates are more desirable
Nitrogen tetroxide flow decay study for the Orbital Workshop Propulsion System Final report
Flow decay of nitrogen tetroxide in Orbital Workshop Propulsion Syste
Test and evaluation of Apollo 14 composite casting demonstration specimens 6, 9, and 12, phase 1
Flight and control specimens 6, 9, and 12 from the Apollo 14 composite casting demonstration were evaluated with respect to the degree of dispersion achieved for mixtures of immiscible materials under one-gravity and low gravity environments. The flight and control capsules 6, 9, and 12 contained paraffin and sodium acetate; paraffin, sodium acetate and argon; and paraffin, sodium acetate and 100 micrometer diameter tungsten microspheres, respectively. The evaluation and documentation utilized photographic and microstructure examinations, density measurements, and droplet size and distribution determinations. In addition, theoretical analyses were performed in order to aid in the understanding of the fluid behavior of the specimens during processing and subsequent solidification. A comparison of evaluated data with the theoretical analyses reveals that although the immiscible materials were uniquely dispersed in a low gravity environment, nonuniform dispersions were obtained primarily due to insufficient initial mixing and an essentially unidirectional thermal gradient during cooldown
A Thallium Mediated Route to \u3cem\u3eσ\u3c/em\u3e-Arylalkynyl Complexes of Bipyridyltricarbonylrhenium(I)
A simple, one-pot preparation of rhenium(I) σ-arylalkynyl complexes is reported using thallium(I) hexafluorophosphate as a halogen abstraction agent. This new route to rhenium σ-alkynyls enjoys higher yields compared to analogous preparations using silver salts by eliminating potential electrochemical degradation pathways
Late metal-silicate separation on the IAB parent asteroid: Constraints from combined W and Pt isotopes and thermal modelling
The short-lived Hf-W decay system is a powerful chronometer
for constraining the timing of metal-silicate separation and core formation in
planetesimals and planets. Neutron capture effects on W isotopes, however,
significantly hamper the application of this tool. In order to correct for
neutron capture effects, Pt isotopes have emerged as a reliable in-situ neutron
dosimeter. This study applies this method to IAB iron meteorites, in order to
constrain the timing of metal segregation on the IAB parent body. The
W values obtained for the IAB iron meteorites range from -3.61
0.10 to -2.73 0.09. Correlating Pt with
W data yields a pre-neutron capture W of -2.90 0.06. This
corresponds to a metal-silicate separation age of 6.0 0.8 Ma after CAI
for the IAB parent body, and is interpreted to represent a body-wide melting
event. Later, between 10 and 14 Ma after CAI, an impact led to a catastrophic
break-up and subsequent reassembly of the parent body. Thermal models of the
interior evolution that are consistent with these estimates suggest that the
IAB parent body underwent metal-silicate separation as a result of internal
heating by short-lived radionuclides and accreted at around 1.4 0.1 Ma
after CAIs with a radius of greater than 60 km.Comment: 11 pages, 8 figures, 2 tables; open access article under the CC
BY-NC-ND license (see http://creativecommons.org/licenses/by-nc-nd/4.0/
Phase glass and zero-temperature phase transition in a randomly frustrated two-dimensional quantum rotor model
The ground state of the quantum rotor model in two dimensions with random
phase frustration is investigated. Extensive Monte Carlo simulations are
performed on the corresponding (2+1)-dimensional classical model under the
entropic sampling scheme. For weak quantum fluctuation, the system is found to
be in a phase glass phase characterized by a finite compressibility and a
finite value for the Edwards-Anderson order parameter, signifying long-ranged
phase rigidity in both spatial and imaginary time directions. Scaling
properties of the model near the transition to the gapped, Mott insulator state
with vanishing compressibility are analyzed. At the quantum critical point, the
dynamic exponent is greater than one. Correlation
length exponents in the spatial and imaginary time directions are given by
and , respectively, both assume values
greater than 0.6723 of the pure case. We speculate that the phase glass phase
is superconducting rather than metallic in the zero current limit.Comment: 14 pages, 4 figures, to appear in JSTA
Distributed Solar Incentive Programs: Recent Experience and Best Practices for Design and Implementation
Based on lessons from recent program experience, this report explores best practices for designing and implementing incentives for small and mid-sized residential and commercial distributed solar energy projects. The findings of this paper are relevant to both new incentive programs as well as those undergoing modifications. The report covers factors to consider in setting and modifying incentive levels over time, differentiating incentives to encourage various market segments, administrative issues such as providing equitable access to incentives and customer protection. It also explores how incentive programs can be designed to respond to changing market conditions while attempting to provide a longer-term and stable environment for the solar industry. The findings are based on interviews with program administrators, regulators, and industry representatives as well as data from numerous incentive programs nationally, particularly the largest and longest-running programs. These best practices consider the perspectives of various stakeholders and the broad objectives of reducing solar costs, encouraging long-term market viability, minimizing ratepayer costs, and protecting consumers
Simulation Studies on the Stability of the Vortex-Glass Order
The stability of the three-dimensional vortex-glass order in random type-II
superconductors with point disorder is investigated by equilibrium Monte Carlo
simulations based on a lattice XY model with a uniform field threading the
system. It is found that the vortex-glass order, which stably exists in the
absence of screening, is destroyed by the screenng effect, corroborating the
previous finding based on the spatially isotropic gauge-glass model. Estimated
critical exponents, however, deviate considerably from the values reported for
the gauge-glass model.Comment: Minor modifications made, a few referenced added; to appear in J.
Phys. Soc. Jpn. Vol.69 No.1 (2000
Two spin liquid phases in the spatially anisotropic triangular Heisenberg model
The quantum spin-1/2 antiferromagnetic Heisenberg model on a two dimensional
triangular lattice geometry with spatial anisotropy is relevant to describe
materials like and organic compounds like
{-(ET)Cu(CN)}. The strength of the spatial anisotropy can
increase quantum fluctuations and can destabilize the magnetically ordered
state leading to non conventional spin liquid phases. In order to understand
these intriguing phenomena, quantum Monte Carlo methods are used to study this
model system as a function of the anisotropic strength, represented by the
ratio between the intra-chain nearest neighbor coupling and the
inter-chain one . We have found evidence of two spin liquid regions. The
first one is stable for small values of the coupling J'/J \alt 0.65, and
appears gapless and fractionalized, whereas the second one is a more
conventional spin liquid with a small spin gap and is energetically favored in
the region 0.65\alt J'/J \alt 0.8. We have also shown that in both spin
liquid phases there is no evidence of broken translation symmetry with dimer or
spin-Peirls order or any broken spatial reflection symmetry of the lattice. The
various phases are in good agreement with the experimental findings, thus
supporting the existence of spin liquid phases in two dimensional quantum
spin-1/2 systems.Comment: 35 pages, 24 figures, 3 table
Fluctuation Dissipation Ratio in Three-Dimensional Spin Glasses
We present an analysis of the data on aging in the three-dimensional Edwards
Anderson spin glass model with nearest neighbor interactions, which is well
suited for the comparison with a recently developed dynamical mean field
theory. We measure the parameter describing the violation of the
relation among correlation and response function implied by the fluctuation
dissipation theorem.Comment: LaTeX 10 pages + 4 figures (appended as uuencoded compressed
tar-file), THP81-9
- …