10,166 research outputs found
Transient Relativistically-Shifted Lines as a Probe of Black Hole Systems
X-ray spectra of Seyfert galaxies have revealed a new type of X-ray spectral
feature, one which appears to offer important new insight into the black hole
system. XMM/Chandra revealed several narrow emission lines redward of Fe Kalpha
in NGC 3516. Since that discovery the phenomenon has been observed in other
Seyfert galaxies, e.g. NGC 7314 and ESO 198-G24. We present new evidence for a
redshifted Fe line in XMM spectra of Mrk 766. These data reveal the first
evidence for a significant shift in the energy of such a line, occurring over a
few tens of kiloseconds. This shift may be interpreted as deceleration of an
ejected blob of gas traveling close to the escape velocity.Comment: 13 pages, 5 figures (4 color) accepted by Ap
Probing the cool ISM in galaxies via 21cm HI absorption
Recent targeted studies of associated HI absorption in radio galaxies are
starting to map out the location, and potential cosmological evolution, of the
cold gas in the host galaxies of Active Galactic Nuclei (AGN). The observed 21
cm absorption profiles often show two distinct spectral-line components:
narrow, deep lines arising from cold gas in the extended disc of the galaxy,
and broad, shallow lines from cold gas close to the AGN (e.g. Morganti et al.
2011). Here, we present results from a targeted search for associated HI
absorption in the youngest and most recently-triggered radio AGN in the local
universe (Allison et al. 2012b). So far, by using the recently commissioned
Australia Telescope Compact Array Broadband Backend (CABB; Wilson et al. 2011),
we have detected two new absorbers and one previously-known system. While two
of these show both a broad, shallow component and a narrow, deep component (see
Fig. 1), one of the new detections has only a single broad, shallow component.
Interestingly, the host galaxies of the first two detections are classified as
gas-rich spirals, while the latter is an early-type galaxy. These detections
were obtained using a spectral-line finding method, based on Bayesian
inference, developed for future large-scale absorption surveys (Allison et al.
2012a).Comment: 1 page, 1 figure, published in Proceedings of IAU Symposium No. 29
The Variable X-ray Spectrum of Markarian 766 - II. Time-Resolved Spectroscopy
CONTEXT: The variable X-ray spectra of AGN systematically show steep
power-law high states and hard-spectrum low states. The hard low state has
previously been found to be a component with only weak variability. The origin
of this component and the relative importance of effects such as absorption and
relativistic blurring are currently not clear. AIMS: In a follow-up of previous
principal components analysis, we aim to determine the relative importance of
scattering and absorption effects on the time-varying X-ray spectrum of the
narrow-line Seyfert 1 galaxy Mrk~766. METHODS: Time-resolved spectroscopy,
slicing XMM and Suzaku data down to 25 ks elements, is used to investigate
whether absorption or scattering components dominate the spectral variations in
Mrk 766.Time-resolved spectroscopy confirms that spectral variability in Mrk
766 can be explained by either of two interpretations of principal components
analysis. Detailed investigation confirm rapid changes in the relative
strengths of scattered and direct emission or rapid changes in absorber
covering fraction provide good explanations of most of the spectral
variability. However, a strong correlation between the 6.97 keV absorption line
and the primary continuum together with rapid opacity changes show that
variations in a complex and multi-layered absorber, most likely a disk wind,
are the dominant source of spectral variability in Mrk 76
An outburst scenario for the X-ray spectral variability in 3C 111
We present a combined Suzaku and Swift BAT broad-band E=0.6-200keV spectral
analysis of three 3C 111 observations obtained in 2010. The data are well
described with an absorbed power-law continuum and a weak (R~0.2) cold
reflection component from distant material. We constrain the continuum cutoff
at E_c~150-200keV, which is in accordance with X-ray Comptonization corona
models and supports claims that the jet emission is only dominant at much
higher energies. Fe XXVI Ly\alpha emission and absorption lines are also
present in the first and second observations, respectively. The modelling and
interpretation of the emission line is complex and we explore three
possibilities. If originating from ionized disc reflection, this should be
emitted at r_in> 50r_g or, in the lamp-post configuration, the illuminating
source should be at a height of h> 30r_g over the black hole. Alternatively,
the line could be modeled with a hot collisionally ionized plasma with
temperature kT = 22.0^{+6.1}_{-3.2} keV or a photo-ionized plasma with
log\xi=4.52^{+0.10}_{-0.16} erg s^{-1} cm and column density N_H > 3x10^23
cm^{-2}. However, the first and second scenarios are less favored on
statistical and physical grounds, respectively. The blue-shifted absorption
line in the second observation can be modelled as an ultra-fast outflow (UFO)
with ionization parameter log\xi=4.47^{+0.76}_{-0.04} erg s^{-1} cm, column
density N_H=(5.3^{+1.8}_{-1.3})x 10^{22} cm^{-2} and outflow velocity v_out =
0.104+/-0.006 c. Interestingly, the parameters of the photo-ionized emission
model remarkably match those of the absorbing UFO. We suggest an outburst
scenario in which an accretion disc wind, initially lying out of the line of
sight and observed in emission, then crosses our view to the source and it is
observed in absorption as a mildly-relativistic UFO.Comment: Accepted for publication in MNARS on July 1st 201
A changing inner radius in the accretion disc of Q0056-363?
Q0056-363 is the most powerful X-ray quasar known to exhibit a broad, likely
relativistic iron line (Porquet & Reeves 2003). It has been observed twice by
XMM-, three and half years apart (July 2000 and December 2003). In the
second observation, the UV and soft X-ray fluxes were fainter, the hard X-ray
power law flatter, and the iron line equivalent width (EW) smaller than in the
2000 observation. These variations can all be explained, at least
qualitatively, if the disc is truncated in the second observation. We report
also on the possible detection of a transient, redshifted iron absorption line
during the 2003 observation.Comment: Accepted for publication in A&
Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers
The existence of ionized X-ray absorbing layers of gas along the line of
sight to the nuclei of Seyfert galaxies is a well established observational
fact. This material is systematically outflowing and shows a large range in
parameters. However, its actual nature and dynamics are still not clear. In
order to gain insights into these important issues we performed a literature
search for papers reporting the parameters of the soft X-ray warm absorbers
(WAs) in 35 type 1 Seyferts and compared their properties to those of the
ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources
with WAs is >60%, consistent with previous studies. The fraction of sources
with UFOs is >34%, >67% of which also show WAs. The large dynamic range
obtained when considering all the absorbers together allows us, for the first
time, to investigate general relations among them. In particular, we find
significant correlations indicating that the closer the absorber is to the
central black hole, the higher the ionization, column, outflow velocity and
consequently the mechanical power. The absorbers continuously populate the
whole parameter space, with the WAs and the UFOs lying always at the two ends
of the distribution. This strongly suggest that these absorbers, often
considered of different types, could actually represent parts of a single
large-scale stratified outflow observed at different locations from the black
hole. The observed parameters and correlations are consistent with both
radiation pressure through Compton scattering and MHD processes contributing to
the outflow acceleration, the latter playing a major role. Most of the
absorbers, especially the UFOs, have a sufficiently high mechanical power to
significantly contribute to AGN feedback.Comment: Manuscript updated to match the MNRAS published version. Link to the
related INAF news: http://www.media.inaf.it/2013/02/05/warm-absorbers
- …