12,239 research outputs found
Barefoot running improves economy at high intensities and peak treadmill velocity
Aim: Barefoot running can improve running economy (RE) compared to shod running at low exercise intensities, but data is lacking for the higher intensities typical during many distance running competitions. The influence of barefoot running on the velocity at maximal oxygen uptake (vVO2max) and peak incremental treadmill test velocity (vmax) is unknown. The present study tested the hypotheses that barefoot running would improve RE, vVO2max and vmax relative to shod running.
Methods: Using a balanced within-subject repeated measures design, eight male runners (aged 23.1±4.5 years, height 1.80±0.06 m, mass 73.8±11.5 kg, VO2max 4.08±0.39 L·min-1) completed a familiarization followed by one barefoot and one shod treadmill running trial, 2-14 days apart. Trial sessions consisted of a 5 minute warm-up, 5 minute rest, followed by 4×4 minute stages, at speeds corresponding to ~67, 75, 84 and 91% shod VO2max respectively, separated by a 1 minute rest. After the 4th stage treadmill speed was incremented by 0.1 km·h-1 every 15 s until participants reached volitional exhaustion.
Results: RE was improved by 4.4±7.0% across intensities in the barefoot condition (P=0.040). The improvement in RE was related to removed shoe mass (r2=0.80, P=0.003) with an intercept at 0% improvement for RE at 0.520 kg total shoe mass. Both vVO2max (by 4.5±5.0%, P=0.048) and vmax (by 3.9±4.0%, P=0.030) also improved but VO2max was unchanged (p=0.747).
Conclusion: Barefoot running improves RE at high exercise intensities and increases vVO2max and vmax, but further research is required to clarify the influence of very light shoe weights on RE
Resolving the large scale spectral variability of the luminous Seyfert 1 galaxy 1H 0419-577: Evidence for a new emission component and absorption by cold dense matter
An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in
September 2002, when the source was in an extreme low-flux state, found a very
hard X-ray spectrum at 1-10 keV with a strong soft excess below ~1 keV.
Comparison with an earlier XMM-Newton observation when 1H 0419-577 was `X-ray
bright' indicated the dominant spectral variability was due to a steep power
law or cool Comptonised thermal emission. Four further XMM-Newton observations,
with 1H 0419-577 in intermediate flux states, now support that conclusion,
while we also find the variable emission component in intermediate state
difference spectra to be strongly modified by absorption in low ionisation
matter. The variable `soft excess' then appears to be an artefact of absorption
of the underlying continuum while the `core' soft emission can be attributed to
recombination in an extended region of more highly ionised gas. We note the
wider implications of finding substantial cold dense matter overlying (or
embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.Comment: 34 pages, 15 figures, submitted to Ap
An XMM-Newton observation of the Narrow Line Seyfert 1 Galaxy, Markarian 896
XMM-Newton observations of the NLS1 Markarian 896 are presented. Over the
2-10 keV band, an iron emission line, close to 6.4 keV, is seen. The line is
just resolved and has an equivalent width of ~170 eV. The broad-band spectrum
is well modelled by a power law slope of gamma ~ 2.03, together with two
blackbody components to fit the soft X-ray excess. Using a more physical
two-temperature Comptonisation model, a good fit is obtained for an input
photon distribution of kT ~ 60eV and Comptonising electron temperatures of ~0.3
and 200 keV. The soft excess cannot be explained purely through the
reprocessing of a hard X-ray continuum by an ionised disc reflector.Comment: 6 pages, 4 figures, accepted by MNRA
Fe K emission and absorption features in XMM-Newton spectra of Mkn 766 - evidence for reprocessing in flare ejecta
We report on the analysis of a long XMM-Newton EPIC observation in 2001 May
of the Narrow Line Seyfert 1 galaxy Mkn 766. The 3-11 keV spectrum exhibits a
moderately steep power law continuum, with a broad emission line at ~6.7 keV,
probably blended with a narrow line at ~6.4 keV, and a broad absorption trough
above ~8.7 keV. We identify both broad spectral features with reprocessing in
He-like Fe. An earlier XMM-Newton observation of Mkn 766 in 2000 May, when the
source was a factor ~2 fainter, shows a similar broad emission line, but with a
slightly flatter power law and absorption at a lower energy. In neither
observation do we find a requirement for the previously reported broad 'red
wing' to the line and hence of reflection from the innermost accretion disc.
More detailed examination of the longer XMM-Newton observation reveals evidence
for rapid spectral variability in the Fe K band, apparently linked with the
occurrence of X-ray 'flares'. A reduction in the emission line strength and
increased high energy absorption during the X-ray flaring suggests that these
transient effects are due to highly ionised ejecta associated with the flares.
Simple scaling from the flare avalanche model proposed for the luminous QSO PDS
456 (Reeves etal. 2002) confirms the feasibility of coherent flaring being the
cause of the strong peaks seen in the X-ray light curve of \mkn.Comment: 9 pages, 11 figures, submitted to MNRA
A simultaneous XMM-Newton and BeppoSAX observation of the archetypal Broad Line Seyfert 1 galaxy NGC 5548
We report the spectral analysis of a long XMM-Newton observation of the
well-studied, moderate luminosity Broad Line Seyfert 1 galaxy NGC 5548. The
source was at an historically average brightness and we find the hard (3-10
keV) spectrum can be well fitted by a power law of photon index gamma ~ 1.75,
together with reflection. The only feature in the hard X-ray spectrum is a
narrow emission line near 6.4 keV, with an equivalent width of ~ 60 eV. The
energy and strength of this line is consistent with fluorescence from `neutral'
iron distant from the central continuum source. We find no evidence for a broad
Fe K line, with an upper limit well below previous reports, suggesting the
inner accretion disc is now absent or highly ionised. The addition of
simultaneous BeppoSAX data allows the analysis to be extended to 200 keV,
yielding important constraints on the total reflection. Extrapolation of the
hard X-ray power law down to 0.3 keV shows a clear `soft excess' below ~ 0.7
keV. After due allowance for the effects of a complex warm absorber, measured
with the XMM-Newton RGS, we find the soft excess is better described as a
smooth upward curvature in the continuum flux below ~ 2 keV. The soft excess
can be modelled either by Comptonised thermal emission or by enhanced
reflection from the surface of a highly ionised disc.Comment: 9 pages, 11 figures, accepted by MNRAS; minor changes to text and
figure
The XMM-Newton Iron Line Profile of NGC 3783
We report on observations of the iron K line in the nearby Seyfert 1 galaxy,
NGC 3783, obtained in a long, 2 orbit (240 ks) XMM-Newton observation. The line
profile obtained exhibits two strong narrow peaks at 6.4 keV and at 7.0 keV,
with measured line equivalent widths of 120 and 35 eV respectively. The 6.4 keV
emission is the K-alpha line from near neutral Fe, whilst the 7.0 keV feature
probably originates from a blend of the neutral Fe K-beta line and the H-like
line of Fe at 6.97 keV. The relatively narrow velocity width of the K-alpha
line (<5000 km/s), its lack of response to the continuum emission on short
timescales and the detection of a neutral Compton reflection component are all
consistent with a distant origin in Compton-thick matter such as the putative
molecular torus. A strong absorption line from highly ionized iron (at 6.67
keV) is detected in the time-averaged iron line profile, whilst the depth of
the feature appears to vary with time, being strongest when the continuum flux
is higher. The iron absorption line probably arises from the highest ionization
component of the known warm absorber in NGC 3783, with an ionization of logxi=3
and column density of 5x10^{22}cm{-2} and may originate from within 0.1pc of
the nucleus. A weak red-wing to the iron K line profile is also detected below
6.4 keV. However when the effect of the highly ionized warm absorber on the
underlying continuum is taken into account, the requirement for a relativistic
iron line component from the inner disk is reduced.Comment: 34 pages, including 11 figures. Accepted for publication in Ap
A Time-Orbiting Potential Trap for Bose-Einstein Condensate Interferometry
We describe a novel atom trap for Bose-Einstein condensates of 87Rb to be
used in atom interferometry experiments. The trap is based on a time-orbiting
potential waveguide. It supports the atoms against gravity while providing weak
confinement to minimize interaction effects. We observe harmonic oscillation
frequencies omega_x, omega_y, omega_z as low as 2 pi times (6.0,1.2,3.3) Hz. Up
to 2 times 10^4 condensate atoms have been loaded into the trap, at estimated
temperatures as low as 850 pK. We anticipate that interferometer measurement
times of 1 s or more should be achievable in this device.Comment: 9 pages, 3 figure
- …