15,055 research outputs found
The human superior colliculus: Neither necessary, nor sufficient for consciousness?
Non-invasive neuroimaging in humans permits direct investigation of the potential role for mesodiencephalic structures in consciousness. Activity in the superior colliculus can be correlated with the contents of consciousness, but it can be also identified for stimuli of which the subject is unaware; and consciousness of some types of visual stimuli may not require the superior colliculus
Neural correlates of motion-induced blindness in the human brain
Motion-induced blindness (MIB) is a visual phenomenon in which highly salient visual targets spontaneously disappear from visual awareness (and subsequently reappear) when superimposed on a moving background of distracters. Such fluctuations in awareness of the targets, although they remain physically present, provide an ideal paradigm to study the neural correlates of visual awareness. Existing behavioral data on MIB are consistent both with a role for structures early in visual processing and with involvement of high-level visual processes. To further investigate this issue, we used high field functional MRI to investigate signals in human low-level visual cortex and motion-sensitive area V5/MT while participants reported disappearance and reappearance of an MIB target. Surprisingly, perceptual invisibility of the target was coupled to an increase in activity in low-level visual cortex plus area V5/MT compared with when the target was visible. This increase was largest in retinotopic regions representing the target location. One possibility is that our findings result from an active process of completion of the field of distracters that acts locally in the visual cortex, coupled to a more global process that facilitates invisibility in general visual cortex. Our findings show that the earliest anatomical stages of human visual cortical processing are implicated in MIB, as with other forms of bistable perception
A neural basis for percept stabilization binocular rivalry
When the same visual input has conflicting interpretations, conscious perception can alternate spontaneously between each competing percept. Surprisingly, such bistable perception can be stabilized by intermittent stimulus removal, suggesting the existence of perceptual "memory" across interruptions in stimulation. The neural basis of such a process remains Unknown. Here, we studied binocular rivalry, one type of bistable perception, in two linked experiments in human participants. First, we showed, in a behavioral experiment using binocular rivalry between face and grating stimuli, that the stabilizing effect of stimulus removal was specific to perceptual alternations evoked by rivalry, and did not occur following physical alternations in the absence of rivalry. We then used functional magnetic resonance imaging to measure brain activity in a variable delay period Of Stimulus removal. Activity in the fusiform face area during the delay period following removal of rivalrous Stimuli was greater following face than grating perception, whereas such a difference was absent during removal of non-rivalrous Stimuli. Moreover, activity in areas of fronto-parietal regions during the delay period correlated with the degree to which individual participants tended to experience percept stabilization. Our findings Suggest that percept-related activity in specialized extrastriate visual areas help to stabilize perception during perceptual conflict, and that high-level mechanisms may determine the influence of such signals on conscious perception
Neural correlates of consciousness are not pictorial representations
O'Regan & Noe (O&N) are pessimistic about the prospects for discovering the neural correlates of consciousness. They argue that there can be no one-to-one correspondence between awareness and patterns of neural activity in the brain, so a project attempting to identify the neural correlates of consciousness is doomed to failure. We believe that this degree of pessimism may be overstated; recent empirical data show some convergence in describing consistent patterns of neural activity associated with visual consciousness
A Unified Model for the Evolution of Galaxies and Quasars
We incorporate a simple scheme for the growth of supermassive black holes
into semi-analytic models that follow the formation and evolution of galaxies
in a cold dark matter dominated Universe. We assume that supermassive black
holes are formed and fuelled during major mergers. If two galaxies of
comparable mass merge, their central black holes coalesce and a few percent of
the gas in the merger remnant is accreted by the new black hole over a
timescale of a few times 10^7 years. With these simple assumptions, our model
not only fits many aspects of the observed evolution of galaxies, but also
reproduces quantitatively the observed relation between bulge luminosity and
black hole mass in nearby galaxies, the strong evolution of the quasar
population with redshift and the relation between the luminosities of nearby
quasars and those of their host galaxies. The strong decline in the number
density of quasars from z=2 to z=0 is due to the combination of three effects:
i) a decrease in the merging rate, ii) a decrease in the amount of cold gas
available to fuel black holes, and iii) an increase in the timescale for gas
accretion. In a LCDM cosmology the predicted decline in the total content of
cold gas in galaxies is consistent with that inferred from observations of
damped Lyman-alpha systems. Our results strongly suggest that the evolution of
supermassive black holes, quasars and starbursts is inextricably linked to the
hierarchical build-up of galaxies.Comment: 30 pages, Latex, 18 figures included, submitted to MNRA
Ionized Gas in Damped Lyman Alpha Protogalaxies: II. Comparison Between Models and the Kinematic Data
We test semi-analytic models for galaxy formation with accurate kinematic
data of damped Lyman alpha protogalaxies (DLAs) presented in the companion
paper I. The models envisage centrifugally supported exponential disks at the
centers of dark matter halos which are filled with ionized gas undergoing
radial infall to the disks. The halo masses are drawn from cross-section
weighted mass distributions predicted by CDM cosmogonies, or by the null
hypothesis (TF model) that the dark matter mass distribution has not evolved
since z ~ 3. In our models, C IV absorption lines detected in DLAs arise in
infalling ionized clouds while the low-ion absorption lines arise from neutral
gas in the disks. Using Monte Carlo methods we find: (a) The CDM models are
incompatible with the low-ion statistics at more than 99% confidence whereas
some TF models cannot be excluded at more than 88% confidence. (b) Both CDM and
TF models agree with the observed distribution of C IV velocity widths. (c) The
CDM models generate differences between the mean velocities of C IV and low ion
profiles in agreement with the data, while the TF model produces differences in
the means that are too large. (d) Both CDM and TF models produce ratios of C IV
to low-ion velocity widths that are too large. (e) Both CDM and TF models
generate C IV versus low-ion cross-correlation functions incompatible with the
data.
While it is possible to select model parameters resulting in consistency with
the data, the disk-halo configuration assumed in both cosmogonies still does
not produce significant overlap in velocity space between C IV low-ion velocity
profiles. We conjecture that including angular momentum of the infalling clouds
will increase the overlap between C IV and low-ion profiles.Comment: 18 pages, 12 Figures, Accepted for publication in the Dec. 20 issue
of the Astrophysical Journa
Faculty Turnover at American Colleges and Universities: Analyses of AAUP Data
This paper uses institutional level data collected by the American Association of University Professors as part of their annual survey of faculty members\u27 compensation to analyze faculty turnover. Analyses of aggregate data over almost a twenty-year period highlight how remarkably stable faculty retention rates have been nationwide and how little they vary across broad categories of institutions. Analyses of variations in faculty retention rates across individual institutions stress the role that faculty compensation levels play. Higher levels of compensation appear to increase retention rates for assistant and associate professors (but not for full professors) and the magnitude of this effect grows larger as one moves from institutions with graduate programs, to four-year undergraduate institutions, to two-year institutions
- …