14,952 research outputs found
Quasi-geostrophic free mode models of long-lived Jovian eddies: Forcing mechanisms and crucial observational tests
Observations of Jupiter and Saturn long-lived eddies, such as Jupiter's Great Red Spot and White Ovals, are presently compared with laboratory experiments and corresponding numerical simulations for free thermal convection in a rotating fluid that is subject to horizontal differential heating and cooling. Difficulties in determining the essential processes maintaining and dissipating stable eddies, on the basis of global energy budget studies, are discussed; such difficulties do not arise in considerations of the flow's potential vorticity budget. On Jupiter, diabatically forced and transient eddy-driven flows primarily differ in the implied role of transient eddies in transporting potential vorticity across closed geostrophic streamlines in the time mean
Transport of absolute angular momentum in quasi-axisymmetric equatorial jet streams
It is well known that prograde equatorial jet stresses cannot occur in an axisymmetric inviscid fluid, owing to the constraints of local angular momentum conservation. For a viscous fluid, the constraints of mass conservation prevent the formation of any local maximum of absolute angular momentum (m) without a means of transferring m against its gradient (delta m) in the meridional plane. The circumstances under which m can be diffused up-gradient by normal molecular viscosity are derived, and illustrated with reference to numerical simulations of axisymmetric flows in a cylindrical annulus. Viscosity is shown to act so as to tend to expel m from the interior outwards from the rotation axis. Such an effect can produce local super-rotation even in a mechanically isolated fluid. The tendency of viscosity to result in the expulsion of m is shown to be analogous in certain respects to a vorticity-mixing hypothesis for the effects of non-axisymmetric eddies of the zonally-averaged flow. It is shown how the advective and diffusive transport of m by non-axisymmetric eddies can be represented by the Transformed Eulerian Mean meridional circulation and the Eliassen-Palm (EP) flux of Andrews and McIntyre respectively, in the zonal mean. Constraints on the form and direction of the EP flux in an advective/diffusive flow for such eddies are derived, by analogy with similar constraints on the diffusive flux of m due to viscosity
Recommended from our members
Potential vorticity, angular momentum and inertial instabilities in the Martian atmospheric circulation from assimilated analyses of MGS/TES
Data based on re-analyses of the MGS/TES observations have been used to map distributions of potential vorticity and axial absolute angular momentum per unit mass. The data, discussed in more details in [1] and [2] stretches over nearly three Martian years and cover a wide range of atmospheric conditions. The spatial distribution and variation in time of angular momentum and potential vorticity are closely related to the zonal-mean circulation. Maps of potential vorticity distributions have been used to establish regions and times favourable for inertial instabilities. A narrow region near the equator which extends throughout the atmosphere is shown to be able to sustain inertial instabilities at different times of the year. The presence of inertial instabilities is predicted from the necessary (but not sufficient) condition for the occurrence of regions of atmosphere with PV of opposite sign to that of the planetary vorticity (PVanomalies). These regions are characterized as being favorable to mixing on small scales, while at larger scales there may be potential links to Rossby wave breaking (Knox et. al. 2005][3]. Analyses of the data indicates a hemispheric asymmetry where the northern hemisphere is more favorable to inertial instabilities particularly during NH winter. Barnes et. al. (1996)[4] used a global Martian circulation model to find that, during dusty solstice conditions, the Martian tropical and mid-latitude atmospheric circulation approximates to an angular-momentum conserving Hadley circulation, and is responsible for creating regions near the equator of low potential vorticity. Using the assimilated data we re-examine these results for a wider range of atmospheric states, including the period of the 2001 planet-encircling dust storm
Recommended from our members
Assessing atmospheric predictability on Mars using numerical weather prediction and data assimilation
Introduction: Studies of the time series of surface measurements of wind, pressure and temperature at the two Viking landers by Barnes [1], [2] revealed that baroclinic transient travelling waves on Mars occur mostly during northern hemisphere autumn, winter and early spring, and typically take the form of highly coherent patterns with planetary wavenumbers 1-3 that can persist for intervals of up to 30-60 sols before changing erratically. Such behaviour is almost unknown on Earth, where individual baroclinic weather systems typically persist for no longer than 5-10 days and seldom remain coherent around entire latitude circles. This occurrence of planetary-scale coherent baroclinic wave-like weather systems on Mars led to suggestions [3] that Mars' atmospheric circulation operates in a quite different dynamical regime to that of the Earth, one that tends to favour regular, symmetrical baroclinic wave activity in a manner reminiscent of the regular wave regimes found in laboratory fluid dynamics experiments on sloping convection in a rotating, thermally-driven fluid annulus (e.g. [4], [5]). In its extreme form, this hypothetical comparison would suggest the possibility of a fully non-chaotic atmospheric circulation on Mars, though subsequent modelling work [6] indicated that perturbations due to the thermal tide would lead to chaotic transitions back and forth between different intransitive wave states. This form of (relatively low-dimensional) chaotic modeflipping appeared to be consistent with the Viking observations of Mars, suggesting nevertheless that the intrinsic predictability of Mars' mid-latitude meteorology was qualitatively and quantitatively quite different from that of the Earth
Recommended from our members
Midwinter suppression of baroclinic storm activity on Mars: observations and models
We present results from assimilated analyses of observations from the Mars Global Surveyor Thermal Emission Spectrometer showing evidence for a regular suppression of baroclinic circumpolar storm activity in both hemispheres of Mars around winter solstice. General circulation model simulations are then used to elucidate the structure and possible causes of this suppression, for which the local тАШEady growth rateтАЩ appears to be a good predictor
Recommended from our members
Data assimilation for Mars: an overview of results from the Mars Global Surveyor period, proposals for future plans and requirements for open access to assimilation output
Abstract not available. From the introduction: 'The Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor (MGS) has produced an extensive atmospheric data set, both during the initial aerobraking hiatus and later from the scientific mapping phase of the mission which lasted almost three complete Martian seasonal cycles. Thermal profiles for the atmosphere below about 40 km, and total dust and water ice opacities, have been retrieved from TES spectra (Conrath et al., 2000, Smith et al., 2000)...'
Recommended from our members
Dust-related interannual and intraseasonal variability of Martian climate using data assimilation
Data assimilation has been applied in several studies [Montabone et al., 2005; Lewis et al., 2005; Montabone et al., 2006a; Montabone et al., 2006b; Lewis et al., 2007; Wilson et al., 2008; Rogberg et al. 2010] as an effective tool with which to analyze spacecraft observations and phenomena (e.g., atmospheric tides, transient wave behavior, effects of clouds in the tropics, weather predictability, etc.) in the Martian atmosphere. A data assimilation scheme combined with a Martian Global Circulation Model (GCM) is able to provide a complete, balanced, four-dimensional solution consistent with observations.
The GCM we use [Forget et al., 1999] combines a spectral dynamical solver and a tracer transport scheme developed in UK and Laboratoire de M├йt├йorologie Dynamique (LMD; Paris, France) physics package developed in collaboration with Oxford, The Open University and Instituto de Astrofisica de Andalucia (Granada, Spain).
Here, we describe and discuss dust-related interannual and intraseasonal variability of the Martian climate. The results shown in this study come from a reanalysis using the Martian GCM with data assimilation scheme which assimilates Mars Global Surveyor/ Thermal Emission Spectrometer (MGS/TES) retrievals of temperature and column dust opacity. The detailed model setup was described by Montabone et al. [2006a], and the data assimilation scheme employed in this study was introduced in the work of Lewis et al. [2007]
Recommended from our members
Super-rotating jets in a re-analysis of the martian atmosphere
Strong westerly, prograde jets have been identified in the martian atmosphere between about 10тАУ20 km altitude throughout much of the year in a Mars Global Circulation Model (MGCM) study [2]. The development of data assimilation techniques for Mars [3, 5] now permits the analysis of super-rotation in less highly idealized cases using an atmospheric reanalysis, as would be done for the Earth. This paper reviews recent atmospheric reanalyses, in order to validate previous modeling results, to quantify jet amplitudes and to diagnose possible mechanisms supplying angular momentum to the jets.
[2] Lewis, S. R., and Read, P. L.: Equatorial jets in the dusty martian atmosphere, J. Geophys. Res., Vol. 108 (E4), 5034, pp. 1тАУ15, 2003.
[3] Lewis, S. R., Read, P. L., Conrath, B. J., Pearl, J. C., and Smith, M. D.: Assimilation of Thermal Emission Spectrometer atmospheric data during the Mars Global Surveyor aerobraking period, Icarus, Vol. 192 (2), pp. 327тАУ347, 2007.
[5] Montabone, L., Lewis, S. R., Read, P. L., Hinson, D. P., Validation of Martian meteorological data assimilation for MGS/TES using radio occultation measurements, Icarus Vol. 185 (1), pp. 113тАУ132, 2006
- тАж