214 research outputs found
Quantum Information and the PCP Theorem
We show how to encode (classical) bits by a single
quantum state of size O(n) qubits, such that: for any constant and
any , the values of the bits
can be retrieved from by a one-round
Arthur-Merlin interactive protocol of size polynomial in . This shows how to
go around Holevo-Nayak's Theorem, using Arthur-Merlin proofs.
We use the new representation to prove the following results:
1) Interactive proofs with quantum advice: We show that the class
contains ALL languages. That is, for any language (even non-recursive), the
membership (for of length ) can be proved by a polynomial-size
quantum interactive proof, where the verifier is a polynomial-size quantum
circuit with working space initiated with some quantum state
(depending only on and ). Moreover, the interactive proof that we give
is of only one round, and the messages communicated are classical.
2) PCP with only one query: We show that the membership (for
of length ) can be proved by a logarithmic-size quantum state ,
together with a polynomial-size classical proof consisting of blocks of length
bits each, such that after measuring the state the
verifier only needs to read {\bf one} block of the classical proof.
While the first result is a straight forward consequence of the new
representation, the second requires an additional machinery of quantum
low-degree-test that may be interesting in its own right.Comment: 30 page
The Surprise Examination Paradox and the Second Incompleteness Theorem
We give a new proof for Godel's second incompleteness theorem, based on
Kolmogorov complexity, Chaitin's incompleteness theorem, and an argument that
resembles the surprise examination paradox. We then go the other way around and
suggest that the second incompleteness theorem gives a possible resolution of
the surprise examination paradox. Roughly speaking, we argue that the flaw in
the derivation of the paradox is that it contains a hidden assumption that one
can prove the consistency of the mathematical theory in which the derivation is
done; which is impossible by the second incompleteness theorem.Comment: 8 page
Recommended from our members
The Random-Query Model and the Memory-Bounded Coupon Collector
We study a new model of space-bounded computation, the random-query model. The model is based on a branching-program over input variables x_1,…,x_n. In each time step, the branching program gets as an input a random index i ∈ {1,…,n}, together with the input variable x_i (rather than querying an input variable of its choice, as in the case of a standard (oblivious) branching program). We motivate the new model in various ways and study time-space tradeoff lower bounds in this model. Our main technical result is a quadratic time-space lower bound for zero-error computations in the random-query model, for XOR, Majority and many other functions. More precisely, a zero-error computation is a computation that stops with high probability and such that conditioning on the event that the computation stopped, the output is correct with probability 1. We prove that for any Boolean function f: {0,1}^n → {0,1}, with sensitivity k, any zero-error computation with time T and space S, satisfies T ⋅ (S+log n) ≥ Ω(n⋅k). We note that the best time-space lower bounds for standard oblivious branching programs are only slightly super linear and improving these bounds is an important long-standing open problem. To prove our results, we study a memory-bounded variant of the coupon-collector problem that seems to us of independent interest and to the best of our knowledge has not been studied before. We consider a zero-error version of the coupon-collector problem. In this problem, the coupon-collector could explicitly choose to stop when he/she is sure with zero-error that all coupons have already been collected. We prove that any zero-error coupon-collector that stops with high probability in time T, and uses space S, satisfies T⋅(S+log n) ≥ Ω(n^2), where n is the number of different coupons
Extractor-Based Time-Space Lower Bounds for Learning
A matrix corresponds to the following
learning problem: An unknown element is chosen uniformly at random. A
learner tries to learn from a stream of samples, , where for every , is chosen uniformly at random and
.
Assume that are such that any submatrix of of at least
rows and at least columns, has a bias
of at most . We show that any learning algorithm for the learning
problem corresponding to requires either a memory of size at least
, or at least samples. The
result holds even if the learner has an exponentially small success probability
(of ).
In particular, this shows that for a large class of learning problems, any
learning algorithm requires either a memory of size at least or an exponential number of samples, achieving a
tight lower bound on the size
of the memory, rather than a bound of obtained in previous works [R17,MM17b].
Moreover, our result implies all previous memory-samples lower bounds, as
well as a number of new applications.
Our proof builds on [R17] that gave a general technique for proving
memory-samples lower bounds
Welfare Maximization with Limited Interaction
We continue the study of welfare maximization in unit-demand (matching)
markets, in a distributed information model where agent's valuations are
unknown to the central planner, and therefore communication is required to
determine an efficient allocation. Dobzinski, Nisan and Oren (STOC'14) showed
that if the market size is , then rounds of interaction (with
logarithmic bandwidth) suffice to obtain an -approximation to the
optimal social welfare. In particular, this implies that such markets converge
to a stable state (constant approximation) in time logarithmic in the market
size.
We obtain the first multi-round lower bound for this setup. We show that even
if the allowable per-round bandwidth of each agent is , the
approximation ratio of any -round (randomized) protocol is no better than
, implying an lower bound on the
rate of convergence of the market to equilibrium.
Our construction and technique may be of interest to round-communication
tradeoffs in the more general setting of combinatorial auctions, for which the
only known lower bound is for simultaneous () protocols [DNO14]
Near-Quadratic Lower Bounds for Two-Pass Graph Streaming Algorithms
We prove that any two-pass graph streaming algorithm for the -
reachability problem in -vertex directed graphs requires near-quadratic
space of bits. As a corollary, we also obtain near-quadratic space
lower bounds for several other fundamental problems including maximum bipartite
matching and (approximate) shortest path in undirected graphs.
Our results collectively imply that a wide range of graph problems admit
essentially no non-trivial streaming algorithm even when two passes over the
input is allowed. Prior to our work, such impossibility results were only known
for single-pass streaming algorithms, and the best two-pass lower bounds only
ruled out space algorithms, leaving open a large gap between
(trivial) upper bounds and lower bounds
Space Pseudorandom Generators by Communication Complexity Lower Bounds
In 1989, Babai, Nisan and Szegedy gave a construction of a pseudorandom generator for logspace, based on lower bounds for multiparty communication complexity. The seed length of their pseudorandom generator was relatively large, because the best lower bounds for multiparty communication complexity are relatively weak. Subsequently, pseudorandom generators for logspace with seed length O(log^2 n) were given by Nisan, and Impagliazzo, Nisan and Wigderson.
In this paper, we show how to use the pseudorandom generator construction of Babai, Nisan and Szegedy to obtain a third construction of a pseudorandom generator with seed length O(log^2 n), achieving the same parameters as Nisan, and Impagliazzo, Nisan and Wigderson. We achieve this by concentrating on protocols in a restricted model of multiparty communication complexity that we call the conservative one-way unicast model and is based on the conservative one-way model of Damm, Jukna and Sgall. We observe that bounds in the conservative one-way unicast model (rather than the standard Number On the Forehead model) are sufficient for the pseudorandom generator construction of Babai, Nisan and Szegedy to work.
Roughly speaking, in a conservative one-way unicast communication protocol, the players speak in turns, one after the other in a fixed order, and every message is visible only to the next player. Moreover, before the beginning of the protocol, each player only knows the inputs of the players that speak after she does and a certain function of the inputs of the players that speak before she does. We prove a lower bound for the communication complexity of conservative one-way unicast communication protocols that compute a family of functions obtained by compositions of strong extractors. Our final pseudorandom generator construction is related to, but different from the constructions of Nisan, and Impagliazzo, Nisan and Wigderson
- …