24,177 research outputs found
A semiclassical theory of quantum noise in open chaotic systems
We consider the quantum evolution of classically chaotic systems in contact
with surroundings. Based on -scaling of an equation for time evolution
of the Wigner's quasi-probability distribution function in presence of
dissipation and thermal diffusion we derive a semiclassical equation for
quantum fluctuations. This identifies an early regime of evolution dominated by
fluctuations in the curvature of the potential due to classical chaos and
dissipation. A stochastic treatment of this classical fluctuations leads us to
a Fokker-Planck equation which is reminiscent of Kramers' equation for
thermally activated processes. This reveals an interplay of three aspects of
evolution of quantum noise in weakly dissipative open systems; the reversible
Liouville flow, the irreversible chaotic diffusion which is characteristic of
the system itself, and irreversible dissipation induced by the external
reservoir. It has been demonstrated that in the dissipation-free case a
competition between Liouville flow in the contracting direction of phase space
and chaotic diffusion sets a critical width in the Wigner function for quantum
fluctuations. We also show how the initial quantum noise gets amplified by
classical chaos and ultimately equilibrated under the influence of dissipation.
We establish that there exists a critical limit to the expansion of phase
space. The limit is determined by chaotic diffusion and dissipation. Making use
of appropriate quantum-classical correspondence we verify the semiclassical
analysis by the fully quantum simulation in a chaotic quartic oscillator.Comment: Plain Latex, 27 pages, 6 ps figure, To appear in Physica
MEA/A-1 experiment 81F01 conducted on STS-7 flight, June 1983. Containerless processing of glass forming melts
The space processing of containerless, glassforming melts on board the space shuttle flight STS-7 is investigated. Objectives include; (1) obtain quantitative evidence for the supression of heterogeneous nucleation/crystallization, (2) study melt homogenization without gravity driven convection, (3) procedural development for bubble free, high purity homogeneous melts inmicro-g, (4) comparative analysis of melts on Earth and in micro g, and (5) assess the apparatus for processing multicomponent, glass forming melts in a low gravity environment
Containerless processing of glass forming melts: D-1, MEA/A-2 experiment 81F01 conducted on STS-61A flight, October 1985
Results of experiment 81F01, which was conducted in the Material Experiment Assembly MEA/A-2 on the D-1 Spacelab Mission (STS-61A), are presented. The general plan of the experiment was to heat, melt, and quench six spherical samples of different glass forming compositions while they were levitated in a single axis acoustic levitator furnace (SAAL). In addition, two non-melting sintered alumina samples were used to check the operational characteristics of the SAAL under reduced gravity conditions. Three of the eight samples were levitated between 1250 and 1500 C before the lack of coolant created an over-temperature condition that caused the SAAL to shut down prematurely. Two of the three samples processed were calcia-gallia-silica and soda-lime-silica glass forming compositions. Evidence of a two to three times increase in the tendency for glass formation was obtained for the calcia-gallia-silica. The final glass appeared reasonably homogeneous even though it was made from hot pressed powders containing deliberate heterogeneities. A photographic record was obtained of the microgravity sample processing sequences
Low-Mass Dileptons at the CERN-SpS: Evidence for Chiral Restoration?
Using a rather complete description of the in-medium spectral function
- being constrained by various independent experimental information - we
calculate pertinent dilepton production rates from hot and dense hadronic
matter. The strong broadening of the resonance entails a reminiscence to
perturbative annihilation rates in the vicinity of the phase
boundary. The application to dilepton observables in Pb(158AGeV)+Au collisions
- incorporating recent information on the hadro-chemical composition at
CERN-SpS energies - essentially supports the broadening scenario. Possible
implications for the nature of chiral symmetry restoration are outlined.Comment: 6 pages ReVTeX including 5 eps-figure
Does monetary policy have differential state-level effects? an empirical evaluation
The paper examines whether monetary policy has similar effects across major states in the Indian polity. Impulse response functions from an estimated Structural Vector Auto Regression (SVAR) reveal two sets of states: a core of states that respond to monetary policy in a significant fashion vis-Ă -vis others whose response is less significant. The paper attempts to trace the reasons for the differential response of these two sets of states in terms of financial deepening and differential industry mix.monetary policy; regional effect; optimum currency area
- âŠ