6,978 research outputs found
Temperature and Kinematics of CIV Absorption Systems
We use Keck HIRES spectra of three intermediate redshift QSOs to study the
physical state and kinematics of the individual components of CIV selected
heavy element absorption systems. Fewer than 8 % of all CIV lines with column
densities greater than 10^{12.5} cm^{-2} have Doppler parameters b < 6 km/s. A
formal decomposition into thermal and non-thermal motion using the simultaneous
presence of SiIV gives a mean thermal Doppler parameter b_{therm}(CIV) = 7.2
km/s, corresponding to a temperature of 38,000 K although temperatures possibly
in excess of 300,000 K occur occasionally. We also find tentative evidence for
a mild increase of temperature with HI column density. Non-thermal motions
within components are typically small (< 10 km/s) for most systems, indicative
of a quiescent environment. The two-point correlation function (TPCF) of CIV
systems on scales up to 500 km/s suggests that there is more than one source of
velocity dispersion. The shape of the TPCF can be understood if the CIV systems
are caused by ensembles of objects with the kinematics of dwarf galaxies on a
small scale, while following the Hubble flow on a larger scale. Individual high
redshift CIV components may be the building blocks of future normal galaxies in
a hierarchical structure formation scenario.Comment: submitted to the ApJ Letters, March 16, 1996 (in press); (13 Latex
pages, 4 Postscript figures, and psfig.sty included
Flux calibration of medium-resolution spectra from 300 nm to 2500 nm: Model reference spectra and telluric correction
While the near-infrared wavelength regime is becoming more and more important
for astrophysics there is a marked lack of spectrophotometric standard star
data that would allow the flux calibration of such data. Furthermore, flux
calibrating medium- to high-resolution \'echelle spectroscopy data is
challenging even in the optical wavelength range, because the available flux
standard data are often too coarsely sampled. We will provide standard star
reference data that allow users to derive response curves from 300nm to 2500nm
for spectroscopic data of medium to high resolution, including those taken with
\'echelle spectrographs. In addition we describe a method to correct for
moderate telluric absorption without the need of observing telluric standard
stars. As reference data for the flux standard stars we use theoretical spectra
derived from stellar model atmospheres. We verify that they provide an
appropriate description of the observed standard star spectra by checking for
residuals in line cores and line overlap regions in the ratios of observed
(X-shooter) spectra to model spectra. The finally selected model spectra are
then corrected for remaining mismatches and photometrically calibrated using
independent observations. The correction of telluric absorption is performed
with the help of telluric model spectra.We provide new, finely sampled
reference spectra without telluric absorption for six southern flux standard
stars that allow the users to flux calibrate their data from 300 nm to 2500 nm,
and a method to correct for telluric absorption using atmospheric models.Comment: Reference spectra available at CDS. Published in A&A 568, A9, 201
The virtual observatory service TheoSSA: Establishing a database of synthetic stellar flux standards. II. NLTE spectral analysis of the OB-type subdwarf Feige 110
In the framework of the Virtual Observatory (VO), the German Astrophysical
Virtual Observatory (GAVO) developed the registered service TheoSSA
(Theoretical Stellar Spectra Access). It provides easy access to stellar
spectral energy distributions (SEDs) and is intended to ingest SEDs calculated
by any model-atmosphere code, generally for all effective temperature, surface
gravities, and elemental compositions. We will establish a database of SEDs of
flux standards that are easily accessible via TheoSSA's web interface.
The OB-type subdwarf Feige 110 is a standard star for flux calibration.
State-of-the-art non-local thermodynamic equilibrium (NLTE) stellar-atmosphere
models that consider opacities of species up to trans-iron elements will be
used to provide a reliable synthetic spectrum to compare with observations.
In case of Feige 110, we demonstrate that the model reproduces not only its
overall continuum shape from the far-ultraviolet (FUV) to the optical
wavelength range but also the numerous metal lines exhibited in its FUV
spectrum.
We present a state-of-the-art spectral analysis of Feige 110. We determined
, and
the abundances of He, N, P, S, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, and Ge. Ti, V,
Mn, Co, Zn, and Ge were identified for the first time in this star. Upper
abundance limits were derived for C, O, Si, Ca, and Sc.
The TheoSSA database of theoretical SEDs of stellar flux standards guarantees
that the flux calibration of astronomical data and cross-calibration between
different instruments can be based on models and SEDs calculated with
state-of-the-art model-atmosphere codes.Comment: 19 pages, 7 figure
Discovery of excess O I absorption towards the z = 6.42 QSO SDSS J1148+5251
We present a search for O I in the spectra of nine 4.9 < z_qso < 6.4 QSOs
taken with Keck/HIRES. We detect six systems with N(O I) > 10^13.7 cm^{-2} in
the redshift intervals where O I 1302 falls redward of the Ly-alpha forest.
Four of these lie towards SDSS J1148+5251 (z_qso = 6.42). This imbalance is
unlikely to arise from variations in sensitivity among our data or from a
statistical fluctuation. The excess O I occurs over a redshift interval that
also contains transmission in Ly-alpha and Ly-beta. Therefore, if these O I
systems represent pockets of neutral gas, then they must occur within or near
regions of the IGM that are highly ionized. In contrast, no O I is detected
towards SDSS J1030+0524 (z_qso = 6.30), whose spectrum shows complete
absorption in Ly-alpha and Ly-beta over \Delta z ~ 0.2. Assuming no ionization
corrections, we measure mean abundance ratios = -0.04 +/- 0.06,
= -0.31 +/- 0.09, and = -0.34 +/- 0.07 (2 sigma), which are
consistent with enrichment dominated by Type II supernovae. The O/Si ratio
limits the fraction of silicon in these systems contributed by metal-free very
massive stars to < 30%, a result which is insensitive to ionization
corrections. The ionic comoving mass densities along the z_qso > 6.2
sightlines, including only the detected systems, are \Omega(O I) = (7.0 +/-
0.6) * 10^{-8}, \Omega(Si II) = (9.6 +/- 0.9) * 10^{-9}, and \Omega(C II) =
(1.5 +/- 0.2) * 10^{-8}.Comment: Submitted to ApJ, with changes to reflect referee's comment
The Distribution of Metallicity in the IGM at z~2.5: OVI and CIV Absorption in the Spectra of 7 QSOs
We present a direct measurement of the metallicity distribution function for
the high redshift intergalactic medium. We determine the shape of this function
using survival statistics, which account for both detections and non-detections
of OVI and CIV associated with HI absorption in quasar spectra. Our OVI sample
probes the metal content of ~50% of all baryons at z~2.5. We find a median
intergalactic abundance of [O,C/H]=-2.82; the differential abundance
distribution is approximately lognormal with mean ~-2.85 and
\sigma=0.75 dex. Some 60-70% the Lya forest lines are enriched to observable
levels ([O,C/H]>-3.5) while the remaining ~30% of the lines have even lower
abundances. Thus we have not detected a universal metallicity floor as has been
suggested for some Population III enrichment scenaria. In fact, we argue that
the bulk of the intergalactic metals formed later than the first stars that are
thought to have triggered reionization. We do not observe a significant trend
of decreasing metallicity toward the lower density IGM, at least within regions
that would be characterized as filaments in numerical simulations. However, an
[O/H] enhancement may be present at somewhat high densities. We estimate that
roughly half of all baryons at these redshifts have been enriched to
[O/H]>=-3.5. We develop a simple model for the metallicity evolution of the
IGM, to estimate the chemical yield of galaxies formed prior to z~2.5. We find
that the typical galaxy recycled 0.1-0.4% of its mass back into the IGM as
heavy elements in the first 3 Gyr after the Big Bang.Comment: 23 pages in emulateapj, 19 figures. Accepted to ApJ, pending review
of new changes. Revised comparison between our results and Schaye et al
(2003
The rapid evolution of the exciting star of the Stingray Nebula
SAO244567, the exciting star of the Stingray nebula, is rapidly evolving.
Previous analyses suggested that it has heated up from an effective temperature
of about 21kK in 1971 to over 50kK in the 1990s. Canonical post-asymptotic
giant branch evolution suggests a relatively high mass while previous analyses
indicate a low-mass star. Fitting line profiles from static and expanding
non-LTE model atmospheres to the observed UV and optical spectra, taken during
1988-2013, allowed us to study the temporal change of effective temperature,
surface gravity, mass-loss rate, and terminal wind velocity. In addition, we
determined the chemical composition of the atmosphere. We find that the central
star has steadily increased its effective temperature from 38kK in 1988 to a
peak value of 60kK in 2002. During the same time, the star was contracting, as
concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a
drop in luminosity. Simultaneously, the mass-loss rate declined from log
(dM/dt/Msun/yr)=-9.0 to -11.6 and the terminal wind velocity increased from
1800km/s to 2800km/s. Since around 2002, the star stopped heating and has
cooled down again to 55kK by 2006. It has a largely solar surface composition
with the exception of slightly subsolar carbon, phosphorus, and sulfur. By
comparison with stellar-evolution calculations, we confirm that SAO244567 must
be a low-mass star (M < 0.55 Msun). However, the slow evolution of the
respective stellar evolutionary models is in strong contrast to the observed
fast evolution and the young planetary nebula with a kinematical age of only
about 1000 years. We speculate that the star could be a late He-shell flash
object. Alternatively, it could be the outcome of close-binary evolution. Then
SAO244567 would be a low-mass (0.354 Msun) helium prewhite dwarf after the
common-envelope phase, during which the planetary nebula was ejected.Comment: 16 pages, 13 figures, accepted for publication in A&
Metal abundances in PG1159 stars from Chandra and FUSE spectroscopy
We investigate FUSE spectra of three PG1159 stars and do not find any
evidence for iron lines. From a comparison with NLTE models we conclude a
deficiency of 1-1.5 dex. We speculate that iron was transformed into heavier
elements. A soft X-ray Chandra spectrum of the unique H- and He-deficient star
H1504+65 is analyzed. We find high neon and magnesium abundances and confirm
that H1504+65 is the bare core of either a C-O or a O-Ne-Mg white dwarf.Comment: To be published in: Proceedings 13th European Workshop on White
Dwarfs, NATO Science Series, 4 pages, 1 figur
- …