14 research outputs found
Anisotropy of conducting \u3ci\u3ep\u3c/i\u3e states and \u3csup\u3e11\u3c/sup\u3eB nuclear spin-lattice relaxation in Mg\u3csub\u3e1-x\u3c/sub\u3eAl\u3csub\u3ex\u3c/sub\u3eB\u3csub\u3e2\u3c/sub\u3e
We calculated the nuclear spin-lattice relaxation rate in the Mg1-xAlxB2 system and found that the orbital relaxation mechanism dominates over the dipolar and Fermi-contact mechanisms in MgB2, whereas in AlB2 due to a smaller density of states and strong anisotropy of boron p orbitals the relaxation is completely determined by Fermi-contact interaction. The results for MgB2 are compared with existing experimental data. To validate the theory, nuclear resonance experiments for the studied diboride alloy system are needed
Quasiclassical calculation of spontaneous current in restricted geometries
Calculation of current and order parameter distribution in inhomogeneous superconductors is often based on a self-consistent solution of Eilenberger equations for quasiclassical Green's functions. Compared to the original Gorkov equations, the problem is much simplified due to the fact that the values of Green's functions at a given point are connected to the bulk ones at infinity (boundary values) by ``dragging'' along the classical trajectories of quasiparticles. In finite size systems, where classical trajectories undergo multiple reflections from surfaces and interfaces, the usefulness of the approach is no longer obvious, since there is no simple criterion to determine what boundary value a trajectory corresponds to, and whether it reaches infinity at all. Here, we demonstrate the modification of the approach based on the Schophol-Maki transformation, which provides the basis for stable numerical calculations in 2D. We apply it to two examples: generation of spontaneous currents and magnetic moments in isolated islands of d-wave superconductor with subdominant order-parameters s and d_{xy}, and in a grain boundary junction between two arbitrarily oriented d-wave superconductors. Both examples are relevant to the discussion of time-reversal symmetry breaking in unconventional superconductors, as well as for application in quantum computing
Second harmonic generation and birefringence of some ternary pnictide semiconductors
A first-principles study of the birefringence and the frequency dependent
second harmonic generation (SHG) coefficients of the ternary pnictide
semiconductors with formula ABC (A = Zn, Cd; B = Si, Ge; C = As, P) with
the chalcopyrite structures was carried out. We show that a simple empirical
observation that a smaller value of the gap is correlated with larger value of
SHG is qualitatively true. However, simple inverse power scaling laws between
gaps and SHG were not found. Instead, the real value of the nonlinear response
is a result of a very delicate balance between different intraband and
interband terms.Comment: 13 pages, 12 figure
Quasiclassical Theory of Spontaneous Currents at Surfaces and Interfaces of d-Wave Superconductors
We investigate the properties of spontaneous currents generated at surfaces
and interfaces of d-wave superconductors using the self-consistent
quasiclassical Eilenberger equations. The influence of the roughness and
reflectivity of the boundaries on the spontaneous current are studied. We show
that these have very different effects at the surfaces compared to the
interfaces, which reflects the different nature of the time reversal symmetry
breaking states in these two systems. We find a signature of the ``anomalous
proximity effect'' at rough d-wave interfaces. We also show that the existence
of a subdominant order parameter, which is necessary for time reversal symmetry
breaking at the surface, suppresses the spontaneous current generation due to
proximity effect at the interface between two superconductors. We associate
orbital moments to the spontaneous currents to explain the ``superscreening''
effect, which seems to be present at all ideal d-wave surfaces and interfaces,
where d_{xy} is the favorite subdominant symmetry.Comment: 13 pages, 17 postscript figure
Linear and Second-order Optical Response of the III-V Mono-layer Superlattices
We report the first fully self-consistent calculations of the nonlinear
optical properties of superlattices. The materials investigated are mono-layer
superlattices with GaP grown on the the top of InP, AlP and GaAs (110)
substrates. We use the full-potential linearized augmented plane wave method
within the generalized gradient approximation to obtain the frequency dependent
dielectric tensor and the second-harmonic-generation susceptibility. The effect
of lattice relaxations on the linear optical properties are studied. Our
calculations show that the major anisotropy in the optical properties is the
result of strain in GaP. This anisotropy is maximum for the superlattice with
maximum lattice mismatch between the constituent materials. In order to
differentiate the superlattice features from the bulk-like transitions an
improvement over the existing effective medium model is proposed. The
superlattice features are found to be more pronounced for the second-order than
the linear optical response indicating the need for full supercell calculations
in determining the correct second-order response.Comment: 9 pages, 4 figures, submitted to Phy. Rev.
Molecular instability at the shear-stress interface
Most extensive efforts in studying buried interfaces are focused on exploring optical, electronic, and magnetic properties. Very little is known about stability of those interfaces. A variety of buried interfaces in energetic molecular materials are of special interest because of their potential association with hot spots, or localized regions that control the dissipation and localization of the mechanical energy and its transfer into the chemical energy. The hot spots are assumed to originate an instability in the material, which leads to the chemical decomposition and ultimately to an explosive chain reaction that releases large amounts of energy stored in these materials. We performed first-principles calculations in order to understand atomic scale mechanisms of these instabilities and the initiation of chemical processes in crystalline DADNE. We report and analyze significant differences in decomposition mechanisms of interfacial molecules in comparison to molecules placed in the bulk crystal
First-principles study of structural, electronic, linear and nonlinear optical properties of Ga 2PSb ternary chalcopyrite
We report results from first-principles density functional calculations using the full-potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) and the Engel-Vosko-generalized gradient approximation (EV-GGA) were used for the exchange-correlation energy of the structural, electronic, linear and nonlinear optical properties of the chalcopyrite Ga2PSb compound. The valence band maximum (VBM) is located at the Γv point, and the conduction band minimum (CBM) is located at the Γc point, resulting in a direct band gap of about 0.365 eV for GGA and 0.83 eV for EV-GGA. In comparison with the experimental one (1.2 eV) we found that EV-GGA calculation gives energy gap in reasonable agreement with the experiment. The spin orbit coupling has marginal influence on the optical properties. The ground state quantities such as lattice parameters (a, c and u), bulk modules B and its pressure derivative B′are evaluated