40 research outputs found

    Minor stars in plane graphs with minimum degree five

    Full text link
    The weight of a subgraph HH in GG is the sum of the degrees in GG of vertices of HH. The {\em height} of a subgraph HH in GG is the maximum degree of vertices of HH in GG. A star in a given graph is minor if its center has degree at most five in the given graph. Lebesgue (1940) gave an approximate description of minor 55-stars in the class of normal plane maps with minimum degree five. In this paper, we give two descriptions of minor 55-stars in plane graphs with minimum degree five. By these descriptions, we can extend several results and give some new results on the weight and height for some special plane graphs with minimum degree five.Comment: 11 pages, 3 figure

    DP-3-coloring of planar graphs without certain cycles

    Full text link
    DP-coloring is a generalization of list coloring, which was introduced by Dvo\v{r}\'{a}k and Postle [J. Combin. Theory Ser. B 129 (2018) 38--54]. Zhang [Inform. Process. Lett. 113 (9) (2013) 354--356] showed that every planar graph with neither adjacent triangles nor 5-, 6-, 9-cycles is 3-choosable. Liu et al. [Discrete Math. 342 (2019) 178--189] showed that every planar graph without 4-, 5-, 6- and 9-cycles is DP-3-colorable. In this paper, we show that every planar graph with neither adjacent triangles nor 5-, 6-, 9-cycles is DP-3-colorable, which generalizes these results. Yu et al. gave three Bordeaux-type results by showing that (i) every planar graph with the distance of triangles at least three and no 4-, 5-cycles is DP-3-colorable; (ii) every planar graph with the distance of triangles at least two and no 4-, 5-, 6-cycles is DP-3-colorable; (iii) every planar graph with the distance of triangles at least two and no 5-, 6-, 7-cycles is DP-3-colorable. We also give two Bordeaux-type results in the last section: (i) every plane graph with neither 5-, 6-, 8-cycles nor triangles at distance less than two is DP-3-colorable; (ii) every plane graph with neither 4-, 5-, 7-cycles nor triangles at distance less than two is DP-3-colorable.Comment: 16 pages, 4 figure

    Planar graphs without normally adjacent short cycles

    Full text link
    Let G\mathscr{G} be the class of plane graphs without triangles normally adjacent to 8−8^{-}-cycles, without 44-cycles normally adjacent to 6−6^{-}-cycles, and without normally adjacent 55-cycles. In this paper, it is showed that every graph in G\mathscr{G} is 33-choosable. Instead of proving this result, we directly prove a stronger result in the form of "weakly" DP-33-coloring. The main theorem improves the results in [J. Combin. Theory Ser. B 129 (2018) 38--54; European J. Combin. 82 (2019) 102995]. Consequently, every planar graph without 44-, 66-, 88-cycles is 33-choosable, and every planar graph without 44-, 55-, 77-, 88-cycles is 33-choosable. In the third section, it is proved that the vertex set of every graph in G\mathscr{G} can be partitioned into an independent set and a set that induces a forest, which strengthens the result in [Discrete Appl. Math. 284 (2020) 626--630]. In the final section, tightness is considered.Comment: 19 pages, 3 figures. The result is strengthened, and a new result is adde

    DP-3-coloring of planar graphs without certain cycles

    Full text link

    Odd Induced Subgraphs in Planar Graphs with Large Girth

    Full text link

    One-Dimensional CNN-Based Intelligent Recognition of Vibrations in Pipeline Monitoring With DAS

    Full text link
    corecore