40 research outputs found
Minor stars in plane graphs with minimum degree five
The weight of a subgraph in is the sum of the degrees in of
vertices of . The {\em height} of a subgraph in is the maximum
degree of vertices of in . A star in a given graph is minor if its
center has degree at most five in the given graph. Lebesgue (1940) gave an
approximate description of minor -stars in the class of normal plane maps
with minimum degree five. In this paper, we give two descriptions of minor
-stars in plane graphs with minimum degree five. By these descriptions, we
can extend several results and give some new results on the weight and height
for some special plane graphs with minimum degree five.Comment: 11 pages, 3 figure
DP-3-coloring of planar graphs without certain cycles
DP-coloring is a generalization of list coloring, which was introduced by
Dvo\v{r}\'{a}k and Postle [J. Combin. Theory Ser. B 129 (2018) 38--54]. Zhang
[Inform. Process. Lett. 113 (9) (2013) 354--356] showed that every planar graph
with neither adjacent triangles nor 5-, 6-, 9-cycles is 3-choosable. Liu et al.
[Discrete Math. 342 (2019) 178--189] showed that every planar graph without 4-,
5-, 6- and 9-cycles is DP-3-colorable. In this paper, we show that every planar
graph with neither adjacent triangles nor 5-, 6-, 9-cycles is DP-3-colorable,
which generalizes these results. Yu et al. gave three Bordeaux-type results by
showing that (i) every planar graph with the distance of triangles at least
three and no 4-, 5-cycles is DP-3-colorable; (ii) every planar graph with the
distance of triangles at least two and no 4-, 5-, 6-cycles is DP-3-colorable;
(iii) every planar graph with the distance of triangles at least two and no 5-,
6-, 7-cycles is DP-3-colorable. We also give two Bordeaux-type results in the
last section: (i) every plane graph with neither 5-, 6-, 8-cycles nor triangles
at distance less than two is DP-3-colorable; (ii) every plane graph with
neither 4-, 5-, 7-cycles nor triangles at distance less than two is
DP-3-colorable.Comment: 16 pages, 4 figure
Planar graphs without normally adjacent short cycles
Let be the class of plane graphs without triangles normally
adjacent to -cycles, without -cycles normally adjacent to
-cycles, and without normally adjacent -cycles. In this paper, it is
showed that every graph in is -choosable. Instead of proving
this result, we directly prove a stronger result in the form of "weakly"
DP--coloring. The main theorem improves the results in [J. Combin. Theory
Ser. B 129 (2018) 38--54; European J. Combin. 82 (2019) 102995]. Consequently,
every planar graph without -, -, -cycles is -choosable, and every
planar graph without -, -, -, -cycles is -choosable. In the
third section, it is proved that the vertex set of every graph in
can be partitioned into an independent set and a set that induces a forest,
which strengthens the result in [Discrete Appl. Math. 284 (2020) 626--630]. In
the final section, tightness is considered.Comment: 19 pages, 3 figures. The result is strengthened, and a new result is
adde