7 research outputs found

    Discovery of a Potent, Selective, and Brain-Penetrant Small Molecule that Activates the Orphan Receptor GPR88 and Reduces Alcohol Intake

    No full text
    The orphan G-protein-coupled receptor GPR88 is highly expressed in the striatum. Studies using GPR88 knockout mice have suggested that the receptor is implicated in alcohol seeking and drinking behaviors. To date, the biological effects of GPR88 activation are still unknown due to the lack of a potent and selective agonist appropriate for in vivo investigation. In this study, we report the discovery of the first potent, selective, and brain-penetrant GPR88 agonist RTI-13951-33 (<b>6</b>). RTI-13951-33 exhibited an EC<sub>50</sub> of 25 nM in an in vitro cAMP functional assay and had no significant off-target activity at 38 GPCRs, ion channels, and neurotransmitter transporters that were tested. RTI-13951-33 displayed enhanced aqueous solubility compared to (1<i>R</i>,2<i>R</i>)-2-PCCA (<b>2</b>) and had favorable pharmacokinetic properties for behavioral assessment. Finally, RTI-13951-33 significantly reduced alcohol self-administration and alcohol intake in a dose-dependent manner without effects on locomotion and sucrose self-administration in rats when administered intraperitoneally

    Diphenyl Purine Derivatives as Peripherally Selective Cannabinoid Receptor 1 Antagonists

    No full text
    Cannabinoid receptor 1 (CB1) antagonists are potentially useful for the treatment of several diseases. However, clinical development of several CB1 antagonists was halted due to central nervous system (CNS)-related side effects including depression and suicidal ideation in some users. Recently, studies have indicated that selective regulation of CB1 receptors in the periphery is a viable strategy for treating several important disorders. Past efforts to develop peripherally selective antagonists of CB1 have largely targeted rimonabant, an inverse agonist of CB1. Reported here are our efforts toward developing a peripherally selective CB1 antagonist based on the otenabant scaffold. Even though otenabant penetrates the CNS, it is unique among CB1 antagonists that have been clinically tested because it has properties that are normally associated with peripherally selective compounds. Our efforts have resulted in an orally absorbed compound that is a potent and selective CB1 antagonist with limited penetration into the CNS

    Discovery of a Potent, Selective, and Brain-Penetrant Small Molecule that Activates the Orphan Receptor GPR88 and Reduces Alcohol Intake

    No full text
    The orphan G-protein-coupled receptor GPR88 is highly expressed in the striatum. Studies using GPR88 knockout mice have suggested that the receptor is implicated in alcohol seeking and drinking behaviors. To date, the biological effects of GPR88 activation are still unknown due to the lack of a potent and selective agonist appropriate for in vivo investigation. In this study, we report the discovery of the first potent, selective, and brain-penetrant GPR88 agonist RTI-13951-33 (<b>6</b>). RTI-13951-33 exhibited an EC<sub>50</sub> of 25 nM in an in vitro cAMP functional assay and had no significant off-target activity at 38 GPCRs, ion channels, and neurotransmitter transporters that were tested. RTI-13951-33 displayed enhanced aqueous solubility compared to (1<i>R</i>,2<i>R</i>)-2-PCCA (<b>2</b>) and had favorable pharmacokinetic properties for behavioral assessment. Finally, RTI-13951-33 significantly reduced alcohol self-administration and alcohol intake in a dose-dependent manner without effects on locomotion and sucrose self-administration in rats when administered intraperitoneally

    Peripherally Selective Diphenyl Purine Antagonist of the CB1 Receptor

    No full text
    Antagonists of the CB1 receptor can be useful in the treatment of several important disorders. However, to date, the only clinically approved CB1 receptor antagonist, rimonabant, was withdrawn because of adverse central nervous system (CNS)-related side effects. Since rimonabant’s withdrawal, several groups are pursuing peripherally selective CB1 antagonists. These compounds are expected to be devoid of undesirable CNS-related effects but maintain efficacy through antagonism of peripherally expressed CB1 receptors. Reported here are our latest results toward the development of a peripherally selective analog of the diphenyl purine CB1 antagonist otenabant <b>1</b>. Compound <b>9</b> (<i>N</i>-{1-[8-(2-chlorophenyl)-9-(4-chlorophenyl)-9<i>H</i>-purin-6-yl]­piperidin-4-yl}­pentanamide) is a potent, orally absorbed antagonist of the CB1 receptor that is >50-fold selective for CB1 over CB2, highly selective for the periphery in a rodent model, and without efficacy in a series of in vivo assays designed to evaluate its ability to mitigate the central effects of Δ<sup>9</sup>-tetrahydrocannabinol through the CB1 receptor

    Peripherally Selective Cannabinoid 1 Receptor (CB1R) Agonists for the Treatment of Neuropathic Pain

    Get PDF
    Alleviation of neuropathic pain by cannabinoids is limited by their central nervous system (CNS) side effects. Indole and indene compounds were engineered for high hCB1R affinity, peripheral selectivity, metabolic stability, and in vivo efficacy. An epithelial cell line assay identified candidates with <1% blood–brain barrier penetration for testing in a rat neuropathy induced by unilateral sciatic nerve entrapment (SNE). The SNE-induced mechanical allodynia was reversibly suppressed, partially or completely, after intraperitoneal or oral administration of several indenes. At doses that relieve neuropathy symptoms, the indenes completely lacked, while the brain-permeant CB1R agonist HU-210 (<b>1</b>) exhibited strong CNS side effects, in catalepsy, hypothermia, and motor incoordination assays. Pharmacokinetic findings of ∼0.001 cerebrospinal fluid:plasma ratio further supported limited CNS penetration. Pretreatment with selective CB1R or CB2R blockers suggested mainly CB1R contribution to an indene’s antiallodynic effects. Therefore, this class of CB1R agonists holds promise as a viable treatment for neuropathic pain

    Blocking Alcoholic Steatosis in Mice with a Peripherally Restricted Purine Antagonist of the Type 1 Cannabinoid Receptor

    No full text
    Type 1 cannabinoid receptor (CB1) antagonists have demonstrated promise for the treatment of obesity, liver disease, metabolic syndrome, and dyslipidemias. However, the inhibition of CB1 receptors in the central nervous system can produce adverse effects, including depression, anxiety, and suicidal ideation. Efforts are now underway to produce peripherally restricted CB1 antagonists to circumvent CNS-associated undesirable effects. In this study, a series of analogues were explored in which the 4-aminopiperidine group of compound <b>2</b> was replaced with aryl- and heteroaryl-substituted piperazine groups both with and without a spacer. This resulted in mildly basic, potent antagonists of human CB1 (hCB1). The 2-chlorobenzyl piperazine, <b>25</b>, was found to be potent (<i>K</i><sub>i</sub> = 8 nM); to be >1000-fold selective for hCB1 over hCB2; to have no hERG liability; and to possess favorable ADME properties including high oral absorption and negligible CNS penetration. Compound <b>25</b> was tested in a mouse model of alcohol-induced liver steatosis and found to be efficacious. Taken together, <b>25</b> represents an exciting lead compound for further clinical development or refinement
    corecore